The Formation and Motion of Small Polarons

  • David Emin
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 17)


In this paper I shall endeavor to qualitatively discuss some essential aspects of the theory of the formation and motion of small polarons. This theory has been developed with the view of applying it to materials which are often classified as low-mobility insulators. T i cally, the mobilities involved are substantially less than 1 cm2 /V-sec.In these circumstances electrical transport is, for the most part, discussed in terms of phonon-assisted hops (tunneling events) rather than in terms of scattering events. Specific situations to which the theory has been applied2 d include ththe motion of holes in the ionic crystals MnO1, NbO2, 2,3 and UO2,4 and the motion of electrons in the molecular crystals orthorhombic sulfur5 (S8) and realgar (AS4S4).6 In addition, the theory may also be applied to noncrystalline systems such as the vanadate glasses. However, the following discussion will be concerned solely with the generic features of the theory of small polarons and not with the detailed application to specific systems.


Optical Phonon Acoustic Phonon Hall Mobility Small Polaron Jump Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Crevecoeur and H. J. de Wit, J. Phys. Chem. Solids 31, 783 (1970).ADSCrossRefGoogle Scholar
  2. 2.
    I. K. Kristensen, J. Appl. Phys. 40, 4992 (1970).ADSCrossRefGoogle Scholar
  3. 3.
    G. Belanger, J. Destry, G. Perluzzo and P. M. Raccah, Can. J. Phys. 52, 2272 (1975).Google Scholar
  4. 4.
    J. Devreese, R. DeCominck and H. Pollak, Phys. Stat. Sol. 17, 825 (1966).ADSCrossRefGoogle Scholar
  5. 5.
    D. J. Gibbons and W. E. Spear, J. Phys. Chem. Solids 27, 1917 (1966).ADSCrossRefGoogle Scholar
  6. 6.
    G. B. Street and W. D. Gill, Phys. Status Solidi 18, 601 (1966).CrossRefGoogle Scholar
  7. 7.
    T. Holstein, Ann. Phys. (N.Y.), 8, 325 (1959)ADSzbMATHCrossRefGoogle Scholar
  8. 8.
    H. Fröhlich, “Polarons and Excitons,” edited by C. G. Kuper and G. D. Whitfield, Plenum, New York, 1963.Google Scholar
  9. 9.
    J. Bardeen and W. Shockley, Phys. Rev. 80, 72 (1950).MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. 10.
    Y. Toyozawa, Prog. Theor. Phys. 26, 29, (1963).MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    D. Emin and T. Holstein, to be published.Google Scholar
  12. 12.
    D. Emin, “Electronics and Structural Properties of Amorphous Semiconductors,” edited by P. G. LeComber and J. Mort, Academic, New York, 1973.Google Scholar
  13. 13.
    D. Emin, Adv. Phys. 22, 57 (1973).ADSCrossRefGoogle Scholar
  14. 14.
    D. Emin, Phys. Rev. Lett. 28, 604 (1972).ADSCrossRefGoogle Scholar
  15. 15.
    D. Emin, J. Solid State Chem. 12, 393 (1975).CrossRefGoogle Scholar
  16. 16.
    K. Sakata,. J. Phys. Soc. Japan 26, 867 (1964).ADSGoogle Scholar
  17. 17.
    R. F. Janninck and D. H. Whitmore, J. Phys. Chem. Solids 27 1183 (1966).ADSCrossRefGoogle Scholar
  18. 18.
    G. Villeneuve, A. Bordet, A. Casalot, J. P. Pouget, H. Lavnois and P. Ledever, J. Phys. Chem. Solids 33, 1953 (1972).ADSCrossRefGoogle Scholar
  19. 19.
    T. Holstein, Ann. Phys. (N.Y.) 8. 343 (1959).ADSCrossRefGoogle Scholar
  20. 20.
    L. Friedman, Phys. Rev. 135, A233 (1964).ADSCrossRefGoogle Scholar
  21. 21.
    A. J. Bosman and H. J. van Daal, Advan. Phys. 19. 1 (1970).ADSCrossRefGoogle Scholar
  22. 22.
    D. Emin, Adv. Phys. 24, 305 (1975).ADSCrossRefGoogle Scholar
  23. 23.
    D. Emin, Phys. Rev. Lett. 32, 303 (1974).ADSCrossRefGoogle Scholar
  24. 24.
    D. Emin, Adv. Phys., to be published.Google Scholar
  25. 25.
    L. Friedman and T. Holstein, Ann. Phys. (N.Y.) 21, 494 (1963).ADSCrossRefGoogle Scholar
  26. 26.
    D. Emin and T. Holstein, Ann. Phys. (N.Y.) 53, 439 (1969).ADSCrossRefGoogle Scholar
  27. 27.
    D. Emin, Phys. Rev. Lett. 25, 1751 (1970).ADSCrossRefGoogle Scholar
  28. 28.
    D. Emin, Phys. Rev. B3, 1321 (1971).ADSCrossRefGoogle Scholar
  29. 29.
    D. Emin, Phys. Rev. B44 3639 (1971).Google Scholar
  30. 30.
    D. Emin, J. Non-Cryst. Solids 8, 511 (1972).ADSCrossRefGoogle Scholar
  31. 31.
    M. Klinger, Phys. Lett. 7, 102 (1963).ADSCrossRefGoogle Scholar
  32. 32.
    H. G. Reik and D. Heese, J. Phys. Chem. Solids. 28. 581 (1967).ADSCrossRefGoogle Scholar
  33. 33.
    V. N. Bogomolov, E. K. Kudinov, D. N. Mirlin, and Y. A. Firsov, Sov. Phys.-Solid State 9, 1630 (1968).Google Scholar
  34. 34.
    V. N. Bogomolov and D. N. Mirlin, Phys. Stat. Sol. 27, 443 (1968)ADSCrossRefGoogle Scholar
  35. 35.
    E. K. Kudinov, D. N. Mirlin, and Yu. A. Firsov, Sov.-Phys. Solid State 11, 2257 (1970).Google Scholar
  36. 36.
    D. Emin, Phys. Rev. Lett. 35, 882 (1975).ADSCrossRefGoogle Scholar
  37. 37.
    D. Emin, unpublished.Google Scholar
  38. 38.
    D. Emin, Ann. Phys. (N.Y.) 64, 336 (1971).ADSCrossRefGoogle Scholar
  39. 39.
    T. Holstein, Phil. Mag. 27, 225 (1973).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • David Emin
    • 1
  1. 1.Sandia LaboratoriesAlbuquerqueUSA

Personalised recommendations