Skip to main content

Part of the book series: NATO Advanced Study Institutes Series ((NSSB,volume 17))

Abstract

In this lecture, we discuss the use of high electric fields to study phonon and photon assisted tunnelling processes between localised states in solids. Illustrations will be given, based on recent work on transition metal ion (TMI) compounds and chalcogenide glasses.

Many TMI glasses show a field dependent do mobility of the form μ =μ0.[sinh β F]/βF, where β = ea/2 kT, as expected for simple hopping. But the jump distance (a) is much larger than expected. Several possible explanations are discussed, including the problem of averaging in a disordered system, local field corrections, barriers etc. In contrast, chalcogenide glasses show a non—linear mobility of the form μ = μ0 exp eaF/kT, which extends to very low fields; this is probably a property of localised states near a mobility edge.

Optical hopping, or photon assisted tunnelling has been studied in charge transfer bands in TMI compounds, and also in connection with models of the Urbach edge in amorphous semiconductors. High field studies give a test of these models and will be briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mott, N. F., 1971, Phil. Mag. 24, 911.

    Article  ADS  Google Scholar 

  2. Marshall, J. M. and Miller, G. R., 1973, Phil. Mag. 27, 1151.

    Article  ADS  Google Scholar 

  3. Austin, I. G. and Sayer, M., 1974, J. Phys. C. (Solid State) 1, 905

    Article  ADS  Google Scholar 

  4. Fritsche, H., 1972, Scottish Universities Summer School on Amorphous Semiconductors (London: Academic Press), p. 557

    Google Scholar 

  5. Jonscher, A. K. and Ansari, A. A., 1971, Phil. Mag. 23, 205.

    Article  ADS  Google Scholar 

  6. Hill, R. J., 1971, Phil. Mag. 24t, 1307.

    Article  ADS  Google Scholar 

  7. Austin, I. G. and Gamble, R. G., 1971, Second Int. Conf. on Conduction in Low Mobility Materials (London: Taylor and Francis) p. 1.

    Google Scholar 

  8. Austin, I. G. and Garbett, E. S., 1972, Scottish Universities Summer School on Amorphous Semiconductors (London: Academic Press) p. 393.

    Google Scholar 

  9. Sayer, M. and Mansingh, A., 1972, Phys. Rev. 6B, 4629.

    Article  ADS  Google Scholar 

  10. Mott, N. F. and Davis, E. A., 1971, Electronic Processes in Non—cryst. Materials (London: UP).

    Google Scholar 

  11. Brenig, W., 1973, Fifth Int. Conf. on Amorphous and Liquid Semiconductors, (London: Taylor and Francis) p. 31.

    Google Scholar 

  12. Spear, W. E., 1973, Fifth Int. Conf. on Amorphous and Liquid Semiconductors, (London: Taylor and Francis) p. 1.

    Google Scholar 

  13. Le Comber, P. G., Madan, A. and Spear, W. E., 1972, J. Non— cryst. Solids 11, 219.

    Article  ADS  Google Scholar 

  14. Nagels, P., Callaerts, R. and Denayer, M., 1973, Fifth Int. Conf. on Amorphous and Liquid Semiconductors (London: Taylor and Francis) p. 867.

    Google Scholar 

  15. Vermeer, J., 1956, Physica 22, 157.

    Google Scholar 

  16. Emin, D., 1972, Scottish Universities Summer School on Amorphous Semiconductors (London: Academic Press) p. 261.

    Google Scholar 

  17. Austin, I. G. and Mott, N. F., 1969, Adv. Phys. 18, 41.

    Article  ADS  Google Scholar 

  18. Efros, A. L., 1967, Sov. Phys. (Solid State) 9, 901.

    Google Scholar 

  19. Klinger, M. I., J. Non—cryst. Solids 4, 463.

    Google Scholar 

  20. Reik, R. G. 1970, Solid St. Communic. 8, 1737.

    Article  ADS  Google Scholar 

  21. Bagley, B. G., 1970, Solid St. Communic. 8, 345.

    Article  ADS  Google Scholar 

  22. Mott, N. F., 1968, J. Non—cryst. Solids 1, 1.

    Article  ADS  Google Scholar 

  23. Miller, A. and Abrahams, E., 1960, Phys. Rev. 120, 745.

    Article  ADS  MATH  Google Scholar 

  24. Jones, R. and Schaich, W., 1972, J. Phys. C. (Solid St.), 5, 43

    Article  ADS  Google Scholar 

  25. Ambegaokar, V., Halperin, B. I. and Langer, J. S., 1971, Phys. Rev 4B, 2612.

    Article  ADS  Google Scholar 

  26. Last, B. J. and Thouless, D. J., 1971, Phys. Rev. Lett., 21. 1719.

    Article  ADS  Google Scholar 

  27. Adler, D., Flora, L. P. and Santuria, S. D. 1973, Solid St. Communic. 12, 9.

    Article  ADS  Google Scholar 

  28. Saglam, M. and Friedman, L. 1975, J. Phys. C. (Solid State), 8L, 245.*

    Article  ADS  Google Scholar 

  29. Munn, R. W., 1972, Chem. Phys. Lett. 16, 429.

    Article  ADS  Google Scholar 

  30. Lidiard, A. B., 1957, Hanb. Phys. 20, 1, 246

    Google Scholar 

  31. Hoodless, I. M., Strange, J. A. and Wyldde, L. E., 1971, J. Phys. C. (Solid State) 4, 2742.

    Article  ADS  Google Scholar 

  32. Fritsche, H., 1971, J. Non—cryst. Solids 6, 49.

    Article  ADS  Google Scholar 

  33. Lemercier, C., 1971, Second Int. Conf. on Conduction in Low Mobility Materials, (London: Taylor and Francis p. 251.)

    Google Scholar 

  34. Marshall, J. M., Fisher, F. D. and Owen, A. E., 1973, Fifth Int. Conf. on Amorphous and Liquid Semiconductors (London: Taylor and Francis) p 1305.

    Google Scholar 

  35. Dussel, G. A. and Boer, K. W., 1970, Phys. Stat. Solidi 29, 375.

    Article  ADS  Google Scholar 

  36. Austin, I. G., 1972, J. Phys. C. (Solid State) 1687.

    Google Scholar 

  37. Austin, I. G., Sayer, M. and Sussman, R. S., 1973, Fifth Int. Conf. on Amorphous and Liquid Semiconductors. (London: Taylor and Francis) p. 1343.

    Google Scholar 

  38. Aspley, N. and Hughes, H. P., 1974, Phil. Mag. 30, 963.

    Article  ADS  Google Scholar 

  39. Dow, J. D., 1972, Comments on Solid State Physics 4B, 35.

    Google Scholar 

  40. Street, R. A., Searle, T. M., Austin, I. G. and Sussmann, R. S., 1974, J. Phys. C. (Solid State) I, 1582.

    Article  ADS  Google Scholar 

  41. Sussmann, R. S., Austin, I. G. and Searle, T. M., 1975, J. Phys. C. (Solid State), in press.

    Google Scholar 

  42. Dow, J. D. and Redfield, D., 1970, Phys. Rev. B1, 3358.

    Article  ADS  Google Scholar 

  43. Lingelbach, W., Stuke, J. and Weiser, G., 1972, Phys. Rev., 5B 243.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer Science+Business Media New York

About this chapter

Cite this chapter

Austin, I.G. (1976). Hopping Transport in High Electric Fields. In: Devreese, J.T., van Doren, V.E. (eds) Linear and Nonlinear Electron Transport in Solids. NATO Advanced Study Institutes Series, vol 17. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0875-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0875-2_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0877-6

  • Online ISBN: 978-1-4757-0875-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics