Advertisement

Theory of Hopping Conductivity in Disordered Semiconductors

  • P. N. Butcher
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 17)

Abstract

The semiclassical theory of hopping conductivity in disordered semiconductors is reviewed. The relationship between hopping conductivity and random walks in random systems is described. The randomness of the system is shown to play a major role in determining the frequency dependence of the ac conductivity. The dc conductivity is controlled by the electron diffusivity which involves the product of the mean hopping frequency and the mean square distance moved per hop. The mean hopping frequency is calculated for simple models and shown to contain no exponential factors. The mean square distance moved per hop is exponentially smaller than the mean square nearest neighbour intersite spacing. It is calculated for simple models by using an approach derived from percolation theory.

Keywords

Random Walk Transition Rate System Average Exponential Factor Conductance Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E.M. Conwell, Phys.Rev. 103, 51 (1956).ADSCrossRefGoogle Scholar
  2. 2.
    N.F. Mott, Canadian J.Phys. 34, 1356 (1956).ADSCrossRefGoogle Scholar
  3. 3.
    N.F. Mott and E.A. Davis, “Electronic Processes in Noncrystalline Materials”, Clarendon Press, Oxford (1971).Google Scholar
  4. 4.
    A. Miller and E. Abrahams, Phys.Rev. 120, 745 (1960).ADSzbMATHCrossRefGoogle Scholar
  5. 5.
    W. Brenig, G. Döhler and P. Wolfe, Z.Physik. 2, 1 (1971).ADSCrossRefGoogle Scholar
  6. 6.
    P.N. Butcher, J.Phys.C: Solid St.Phys. 5, 1817 (1972).ADSCrossRefGoogle Scholar
  7. 7.
    P.N. Butcher, J.Phys.C: Solid St.Phys. 7, 879 (1974).ADSCrossRefGoogle Scholar
  8. 8.
    P.N. Butcher, J.Phys.C: Solid St.Phys. 7, 264 (1974).Google Scholar
  9. 9.
    M. Pollak and T.H. Geballe, Phys.Rev. 122, 1742 (1961).ADSCrossRefGoogle Scholar
  10. 10.
    V. Ambegaokar, B.L. Halperin and J.S. Langer, Phys. Rev. B4, 2612 (1971).ADSCrossRefGoogle Scholar
  11. 11.
    M. Pollak, J. Non-cryst.Solids, 11, 1 (1972).ADSCrossRefGoogle Scholar
  12. 12.
    R. Jones and W. Schaich, J.Phys.C: Solid St.Phys. 5, 43 (1972).ADSCrossRefGoogle Scholar
  13. 13.
    H. Scher and M. Lax, Phys.Rev. B7, 4491 (1973).MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    H. Scher and M. Lax, Phys.Rev. B7, 4502 (1973).MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    M. Pollak, Phys.Rev. 133A, 564 (1964).ADSCrossRefGoogle Scholar
  16. 16.
    M. Pollak, Phys.Rev. 138A, 1822 (1965).ADSCrossRefGoogle Scholar
  17. 17.
    M. Pollak, Phil.Mag. 23, 519 (1971).ADSCrossRefGoogle Scholar
  18. 18.
    P.N. Butcher and P.L. Morys, J.Phys.C: Solid St.Phys. 6, 2147 (1973).ADSCrossRefGoogle Scholar
  19. 19.
    A.H. Wilson, “The Theory of Metals”, Cambridge University Press, Cambridge (1936).Google Scholar
  20. 20.
    P.N. Butcher and P.L. Morys, Proc. 5th Int.Conf. on Amorphous and Liquid Semiconductors, p.153, Taylor and Francis, London (1974).Google Scholar
  21. 21.
    S. Golin, Phys.Rev. 132, 178 (1963).ADSCrossRefGoogle Scholar
  22. 22.
    H.K. Rockstad, J.Noncryst.Solids, 2, 192 (1970).ADSCrossRefGoogle Scholar
  23. 23.
    K.L. Chopra and S.K. Bahl, Phys.Rev., B1 2545 (1970).ADSGoogle Scholar
  24. 24.
    A.I. Lakatos and M. Abkowitz, Phys.Rev. B3, 1791 (1971).ADSCrossRefGoogle Scholar
  25. 25.
    G.E. Pike, Phys.Rev. B6, 1572 (1972).ADSCrossRefGoogle Scholar
  26. 26.
    H. Fröhlich, “Theory of Dielectrics”, Clarendon Press, Oxford (1949).Google Scholar
  27. 27.
    A.E. Owen, Prof.Ceramic Sci. 3, 77 (1963).Google Scholar
  28. 28.
    A.K. Jonscher, Nature, 253, 717 (1975).ADSCrossRefGoogle Scholar
  29. 29.
    H. Margenau and G.M. Murphy, “The Mathematics of Physics and Chemistry”, Van Nostrand, New York (1956).zbMATHGoogle Scholar
  30. 30.
    V.K.S. Shante and S. Kirkpatrick, Adv.Phys. 20, 325 (1971).ADSCrossRefGoogle Scholar
  31. 31.
    K. Maschke, H. Overhof and P. Thomas, Phys.Stat.Sol. B62, 113 (1974).ADSCrossRefGoogle Scholar
  32. 32.
    V. Ambegaokar, S. Cochran and J. Kirkijärvi, Phys.Rev. B8, 3682 (1973).ADSCrossRefGoogle Scholar
  33. 33.
    J. Kirkijärvi, Phys.Rev. B9, 770 (1974).CrossRefGoogle Scholar
  34. 34.
    C.H. Seager and G.E. Pike, Phys.Rev. B10, 1421, 1435 (1974).ADSGoogle Scholar
  35. 35.
    A.J. Grant and E.A. Davis, Solid St.Comm. 15, 563 (1974).ADSCrossRefGoogle Scholar
  36. 36.
    N.F. Mott, Phil.Mag. 19, 835 (1969).ADSCrossRefGoogle Scholar
  37. 37.
    E.M. Hamilton, Phil.Mag. 26, 1043 (1972).ADSCrossRefGoogle Scholar
  38. 38.
    F.R. Allen and C.J. Adkins, Phil.Mag. 26, 1027 (1972).ADSCrossRefGoogle Scholar
  39. 39.
    P.N. Butcher, to be published (1975).Google Scholar
  40. 40.
    J.K.E. Tunaley, Phys.Rev.Letts. 33, 1037 (1974).ADSCrossRefGoogle Scholar
  41. 41.
    N. Apsley and H.P. Hughes, Phil.Mag. 30, 963 (1975).ADSCrossRefGoogle Scholar
  42. 42.
    R.M. Hill, to be published (1975).Google Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • P. N. Butcher
    • 1
  1. 1.University of WarwickCoventryEngland

Personalised recommendations