Classical Transport in Small-Gap Semiconductors

  • Włodek Zawadzki
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 17)

Abstract

One can probably claim that small-gap semiconduc tors are “better” semiconductors than others; they have smallest effective masses and highest mobilities, and being most sensitive to doping, temperature, magnetic field and pressure, they exhibit typically semiconducting features but to a higher degree. The purpose of these lectures is to review the theory and experiment concerning electron scattering and transport phenomena in these materials. We shall mostly consider III – V and II – VI intermetallic compounds, although the number of small-gap semiconductors includes many more materials.

Keywords

Effective Mass Thermoelectric Power Heavy Hole Electron Effective Mass Acoustic Scattering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.H. Wilson, “The Theory of Metals”, Second Ed. , Cambridge Univer.Press, 1953.Google Scholar
  2. 2.
    H.J. Hrostowski, G.H. Wheatley, and W.F. Flood, Phys. Rev. 95, 1683 (1954).ADSCrossRefGoogle Scholar
  3. 3.
    R. Barrie and J.T. Edmond, J. Electronics, 1 , 161 (1955)Google Scholar
  4. 3a.
    R. Barrie, Proc.Phys.Soc. London, B69 553 (1956)ADSMATHCrossRefGoogle Scholar
  5. 3b.
    R. Barrie, Phys.Rev. 103 , 1581 (1956).ADSCrossRefGoogle Scholar
  6. 4.
    J.M. Radcliffe, Proc.Phys.Soc. A68, 675 (1955).ADSMATHCrossRefGoogle Scholar
  7. 5.
    E.O. Kane, J. Phys. Chem. Solids , 1 , 249 (1957).ADSCrossRefGoogle Scholar
  8. 6.
    H. Ehrenreich, J.Phys.Chem. Solids, 2, 131 (1957).ADSCrossRefGoogle Scholar
  9. 7.
    H. Ehrenreich, J.Phys.Chem. Solids, 9, 129 (1959).ADSCrossRefGoogle Scholar
  10. 8.
    W.G. Spitzer and H.Y. Fan, Phys.Rev. 106, 882 (1957).ADSCrossRefGoogle Scholar
  11. 9.
    S.D. Smith, T.S. Moss, and K.W. Taylor, J.Phys.Chem. Solids 11, 131 (1959).ADSCrossRefGoogle Scholar
  12. 10.
    J. Kołodziejczak, Acta Phys.Polon. 20, 379 (1961).MATHGoogle Scholar
  13. 11.
    J. Kołodziejczak, Acta Phys. Polon. 21, 637 (1962).MATHGoogle Scholar
  14. 12.
    J. Kołodziejczak and L. Sosnowski, Acta Phys. Polon. 21, 399 (1962)MATHGoogle Scholar
  15. 12a.
    J. Kołodziejczak, L. Sosnowski, and W. Zawadzki, Proc.Intern.Conf.Phys.Semi cond. Exeter 1962, p. 94.Google Scholar
  16. 13.
    M. Rodot, J.Phys.Chem. Solids 8, 358 (1959).ADSCrossRefGoogle Scholar
  17. 14.
    S. Groves and W. Paul., Phys.Rev.Letters 11, 194 (1963) Proc. VII Intern.Conf.Phys.Semicond. Dunod, Paris, 1964, p. 41.ADSCrossRefGoogle Scholar
  18. 15.
    L.L. Korenblit and V.E. Sherstobitov, Fiz. Tekh. Poluprov. 2, 675 (1968). This paper contains numerous errors and misprints.Google Scholar
  19. 16.
    W. Zawadzki and W. Szymarlska, Phys. Stat. Solidi (b) , 45, 415 (1971).ADSCrossRefGoogle Scholar
  20. 17.
    W. Zawadzki and W. Szymarska, J. Phys. Chem. Solids 32, 1151 (1971).ADSCrossRefGoogle Scholar
  21. 18.
    Yu.I. Ravich and L.Ya. Morgovskii, Fiz. Tekh. Polu prov. 3, 1528 (1969).Google Scholar
  22. 19.
    L. Liu and D. Brust, Phys. Rev. 173, 777 (1968).ADSCrossRefGoogle Scholar
  23. 20.
    L. Liu and E. Tossatti, Phys.Rev. B, 2, 1926 (1970).ADSCrossRefGoogle Scholar
  24. 21.
    J.G. Broerman, Phys.Rev. B,2, 1818 (1970).ADSCrossRefGoogle Scholar
  25. 22.
    Proc. 11 Intern. Conf.. Phys. Semicond. , Polish Scient. Publishers, Warsaw, 1972.Google Scholar
  26. 23.
    W. Zawadzki, Advances in Physics 23, 435 (1974).ADSCrossRefGoogle Scholar
  27. 24.
    Yu.I. Ravich, B.A. Efimova, and V.I. Tamarchenko, Phys. Stat.Sol (b) 43, 11 (1971); 43, 453 (1971 ).ADSCrossRefGoogle Scholar
  28. 25.
    W. Zawadzki and J. Kołodziejczak, Phys.Stat.Sol. 6, 409 (1964 ).ADSCrossRefGoogle Scholar
  29. 26.
    C.R. Pidgeon and R.N. Brown, Phys.Rev. 146, 575 (1966).ADSCrossRefGoogle Scholar
  30. 27.
    R.R. Gałazka, D.G. Seiler and W.M. Becker, in “Physics of Semimetals and NarrowGap Semicon ductors”, Ed. D.L. Carter and R.T. Bate, Pergamon Press 1971, p. 481.Google Scholar
  31. 28.
    R.R. Gałazka and L. Sosnowski, Phys.Stat.Solidi 20, 113 (1967).ADSCrossRefGoogle Scholar
  32. 29.
    S. Zukotyński and J. Kołodziejczak, Phys.Stat.Sol. l. 3, 990 (1963)Google Scholar
  33. 29a.
    J. Kołodziejczak and S. Zukotvrnski, Phys.Stat. Sol. 5, 145 (1964).ADSCrossRefGoogle Scholar
  34. 30.
    W. Zawadzki and J. Kołodziejczak, Phys. Stat. Sol. 6,419 (1964)ADSCrossRefGoogle Scholar
  35. 30a.
    W. Zawadzki, Phys. Stat.Sol. 8, 739 (1965).ADSCrossRefGoogle Scholar
  36. 31.
    Due to a formal analogy between the firstorder non parabolic ε(k) dependence of Eq. (3.5) and the energy momentum relation for the free relativi stic electrons (cf. W. Zawadzki, in “Optical Properties of Solids” E.D.Haidemenakis, Ed., Gordon and Breach 1970, p. 179) , the thermo dynamic properties described in this chapter are formally identical with those of Jüttners relativistic gas of fermions [F. Jüttner’ Z. Physik 47, 542 (1928); H. Arzeliès, “Thermodynamique Relativiste et Quantique”, Gauthier-Villars, Paris 1968].ADSMATHCrossRefGoogle Scholar
  37. 32.
    J. Koxodziejczak, Proc. Intern. Conf. Phys. Semicond., Prague 1960, p. 950.Google Scholar
  38. 33.
    W. Zawadzki, R. Kowalczyk, and J. Kołodziejczak, Phys.Stat.Sol., 10, 513 (1965).ADSCrossRefGoogle Scholar
  39. 34.
    H.H. McDonald, Proc. London Math. Soc. 30, 167 (1899). E.T. Whittaker and G.N. Watson, “A Course of Modern Analysis” Cambridge 1927.Google Scholar
  40. 35.
    A.H. Wilson, “Thermodynamics and Statistical Mechanics”, Cambridge Univ.Press (1957).MATHGoogle Scholar
  41. 36.
    A.I. Anselm, “Introduction to the Theory of Semiconductors”, GIFML, Moscow 1962 (in Russian).Google Scholar
  42. 37.
    W. Zawadzki, Phys.Stat. Sol., 3, 692(1963); 3, 1 006 (1963).ADSCrossRefGoogle Scholar
  43. 38.
    D.J. Howarth and E.H. Sondheimer, Proc. Roy. Soc. A219, 53 (1953).ADSMATHCrossRefGoogle Scholar
  44. 39.
    B.F. Lewis and E.H. Sondheimer, Proc.Roy.Soc. A227, 241 (1954).ADSGoogle Scholar
  45. 40.
    L.L. Korenblit and V.E. Sherstobitov, Fiz.Tekh.Poluprov. 2, 688 (1968 ).Google Scholar
  46. 41.
    V.I. Tamarchenko, Yu.I. Ravich, L.Ya. Morgovskii, and I.V. Dubrovskaya, Fiz.Tverd.Tela 11, 3206 (1969).Google Scholar
  47. 42.
    P. Kacman and W. Zawadzki , Phys.Stat.Sol.(b), 47 629 (1971).ADSCrossRefGoogle Scholar
  48. 43.
    W. Szymańska, P. Bogusławski, and W. Zawadzki , Phys. Stat.Sol. (b), 65, 641 (1974).ADSCrossRefGoogle Scholar
  49. 44.
    J.G. Broerman, Phys.Rev. B1, 4568 (1970).ADSCrossRefGoogle Scholar
  50. 45.
    J.G. Broerman, Phys.Rev.Lett. 25, 1658 (1970).ADSCrossRefGoogle Scholar
  51. 46.
    E. Litwin-Staszewska, S. Porowski, and A.A. Filipchenko, Phys.Stat.Sol. (b), 48,519 (1971 ).ADSCrossRefGoogle Scholar
  52. 47.
    D.L. Rode, Phys.Rev. B3, 3287 (1971).ADSCrossRefGoogle Scholar
  53. 48.
    R. Piotrzkowskii, S. Porowski, Z. Dziuba, J. Ginter, W. Giriat, and L. Sosnowski, Phys.Stat.Sol. 8, K135 (1965).ADSCrossRefGoogle Scholar
  54. 49.
    I.V. Motchan, Yu.N. Obraztsov, and T.V. Smirnova, Fiz.Tverd.Tela 4, 1021 (1962).Google Scholar
  55. 50.
    A. Jedrzejczak, PhD-Thesis, Institute of Physics, Polish Academy of Sciences, Warsaw 1972. Un published.Google Scholar
  56. 51.
    V.M. Muzhdaba and S.S. Shalyt, Fiz.Tverd.Tela 8, 3727 (1966).Google Scholar
  57. 52.
    Yu.I. Ravich, I.A. Smirnov, and V.V. Tikhonov, Fiz. Tekh. Poluprov., 1, 206 (1967).Google Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • Włodek Zawadzki
    • 1
  1. 1.Institute of PhysicsPolish Academy of SciencesWarsawPoland

Personalised recommendations