Advertisement

Linear and Nonlinear Response Theory with Applications

  • David C. Langreth
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 17)

Abstract

The basic perturbation theoretic method for dealing with non-equilibrium quantum statistical mechanical problems has been known for years. The theory discussed here evolved from the work of Schwinger and was developed further by Kadanoff and Baym1. In fact virtually all the theory discussed here is contained in Kadanoff’s and Baym’s book. Essentially the same theory was developed independently by Keldysh2 who even anticipates a rather useful addendum by Craig3.

Keywords

Boltzmann Equation Perturbation Expansion Dyson Equation Gradient Expansion Photon Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics, W. A. Benjamin, Inc., New York, 1962.zbMATHGoogle Scholar
  2. 2.
    L. V. Keldysh, J. Exptl. Theoret. Phys. (U.S.S.R.) 47, 1515 (1964) [English Translation: Soviet Physics JETP 20, 1018 (1965)].Google Scholar
  3. 3.
    R. A. Craig, J. Math. Phys. 9, 605 (1968).ADSCrossRefGoogle Scholar
  4. 4.
    J. R. Schrieffer, Theory of Superconductivity,W. A. Benjamin, Inc., New York, 1964.zbMATHGoogle Scholar
  5. 5.
    J. Schwinger, Proc. Nat’l. Acad. Sci. U.S. 37, 452 (1951).MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    See for example D. Pines, The Many-Body Problem, W. A. Benjamin, Inc., New York, 1961, p. 41, Eq. (2.49).Google Scholar
  7. 7.
    The derivation of the identities given here is taken from D. C. Langreth and J. W. Wilkins, Phys. Rev. 6, 3189 (1972).ADSCrossRefGoogle Scholar
  8. 8.
    R. E. Prange and L. P. Kadanoff 134, A566 (1964).ADSCrossRefGoogle Scholar
  9. 9.
    D. C. Langreth, Phys. Rev. 159, 717 (1967).ADSCrossRefGoogle Scholar
  10. 10.
    D. C. Langreth, D. L. Cowan and J. W. Wilkins, Solid State Commun. 6, 131 (1968);ADSCrossRefGoogle Scholar
  11. 10a.
    D. C. Langreth and J. W. Wilkins, Phys. Rev. 6, 3189 (1972)ADSCrossRefGoogle Scholar
  12. 10b.
    J. Sweer, D. C. Langreth and J. W. Wilkins, Phys. Rev. (to appear).Google Scholar
  13. 11.
    This work was reviewed by D. C. Langreth in Nobel Symposia — Medicine and Natural Sciences, Academic Press, New York and London, Vol. 24, p. 210, 1973.Google Scholar
  14. 12.
    J. T. Yue and S. Doniach, Phys. Rev. B8, 4578 (1973).ADSCrossRefGoogle Scholar
  15. 13.
    T. McMullen and B. Bergersen, Can. J. Phys. 50, 1002 (1972).ADSCrossRefGoogle Scholar
  16. 14.
    P. Nozieres and E. Abrahams, Phys. Rev. B10, 3099 (1974).ADSCrossRefGoogle Scholar
  17. 15.
    For the band case where ε2 p p /2m see D. C. Langreth, Phys. Rev. 148, 707 (1966).ADSCrossRefGoogle Scholar
  18. 16.
    D. C. Langreth, Phys. Rev. Lett. 26, 1229 (1971); see Eq. (8).ADSCrossRefGoogle Scholar
  19. 17.
    J. J. Chang and D. C. Langreth, Phys. Rev. B5, 3512 (1972).ADSCrossRefGoogle Scholar
  20. 18.
    J. J. Chang and D. C. Langreth, Bull. Am. Phys. Soc. 18, 55 (1973)Google Scholar
  21. 18a.
    J. J. Chang and D. C. Langreth, Phys. Rev. B8, 4638 (1973).ADSCrossRefGoogle Scholar
  22. 19.
    C. Caroli, D. Lederer-Rozenblatt , B. Roulet and S. Saint-James, Phys. Rev. B8, 4552 (1973).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • David C. Langreth
    • 1
  1. 1.Rutgers UniversityNew BrunswickUSA

Personalised recommendations