Global Principles and the Theory of Gravitation

  • Hans-Jürgen Treder
  • Horst-Heino von Borzeszkowski
  • Alwyn van der Merwe
  • Wolfgang Yourgrau


In order to attempt a global description of gravitation, one has to consider the entire cosmos, rather than infinitesimal space—time regions. Unfortunately, our experience from nongravitational physics is in the first instance of no use in this approach, as the physics in question has a local, field-theoretical, character. We are left with only one possibility : Start with a global formulation of gravitational law, and afterwards attempt to relate it to local, gravitational as well as nongravitational, physics.


Gravitational Potential Inertial Mass Particle Cloud Canonical Equation Canonical Momentum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ambartsumjan, V. A. (1975). Sitzungsber. Akad. Wiss. D.D.R., 15N.Google Scholar
  2. Dicke, R. H. (1964). “The many faces of Mach,” in Chiu, H.-J. and Hoffmann, W. F. (eds.), Gravitation and Relativity, W. A. Benjamin, New York—Amsterdam.Google Scholar
  3. Eddington, A. S. (1936). Relativity Theory of Protons and Electrons, University Press, Cambridge.Google Scholar
  4. Eddington, A. S. (1948). Fundamental Theory, University Press, Cambridge.Google Scholar
  5. Einstein, A. (1912). Vierteljahresschr. Gerichtl. Med. 44, 37.Google Scholar
  6. Einstein, A. (1913). Phys. Z. 14, 1249.zbMATHGoogle Scholar
  7. Einstein, A. (1917). Sitz ungsber. Preuss. Akad. Wiss., 124.Google Scholar
  8. Einstein, A. (1921). The Meaning of Relativity, University Press, Princeton. Later editions 1945, 1956.Google Scholar
  9. Einstein, A. (1922). Ann. Phys. (Leipzig) 69, 486.Google Scholar
  10. Einstein, A. (1969). Grundzüge der Relativitätstheorie, 5th ed., F. Vieweg, Berlin—Braunschweig.zbMATHGoogle Scholar
  11. Fokker, A. D. (1965). Time and Space, Weight and Inertia, Pergamon Press, Elmsford (New York).zbMATHGoogle Scholar
  12. Friedlander, B. and J., Friedlander (1896). Absolute oder Relative Bewegung?, L. Simion, Berlin.Google Scholar
  13. Heckmann, O. (1969). Theorien der Kosmologie, J. Springer, Berlin. First edition 1942.Google Scholar
  14. Hertz, H. (1894). Die Prinzipien der Mechanik, J. A. Barth, Leipzig. Later edition 1910.Google Scholar
  15. Jordan, P. (1961). Die Expansion der Erde, F. Vieweg, Braunschweig.Google Scholar
  16. Mach, E. (1883). Die Mechanik in ihrer Entwicklung, F. A. Brockhaus, Leipzig. Later edition 1933.Google Scholar
  17. McCrea, W. H. and Milne, E. A. (1934). Quart. J. Math. Oxford 5, 73.ADSzbMATHCrossRefGoogle Scholar
  18. Milne, E. A. (1933). Relativity, Gravitation and World Structure, University Press, Oxford.Google Scholar
  19. Milne, E. A. (1934). Quart. J. Math. Oxford 5, 64.ADSzbMATHCrossRefGoogle Scholar
  20. Milne, E. A. (1948). Kinematic Relativity, University Press, Oxford. Later edition 1951.zbMATHGoogle Scholar
  21. Muradjan, R. M. (1975). Astrofizika 11, 237.ADSGoogle Scholar
  22. Neumann, C. (1870), Über die Prinzipien der Galilei—Newtonschen Theorie, B. G. Teubner, Leipzig.Google Scholar
  23. Neumann, C. (1896). Allgemeine Untersuchungen über die Newtonsche Theorie der Fernwirkung, B. G. Teubner, Leipzig.Google Scholar
  24. Planck, M. (1887). Das Prinzip der Erhaltung der Energie, B. G. Teubner, Berlin—Leipzig. Later editions 1909, 1913.Google Scholar
  25. Poincaré, H. (1912). Wissenschaft und Hypothese, 3rd ed., B. G. Teubner, Leipzig.Google Scholar
  26. Poincaré, H. (1914). Wissenschaft und Methode, B. G. Teubner, Leipzig—Berlin.zbMATHGoogle Scholar
  27. Riemann, B. (1880). Schwere, Elektrizität und Magnetismus, 2nd ed., C. Rümpler, Hannover .Google Scholar
  28. Selety, F. (1922). Ann. Phys. (Leipzig) 68, 281.ADSGoogle Scholar
  29. De Sitter, W. (1917). Proc. Acad. Sci. Amsterdam 19, 1217.Google Scholar
  30. Thirring, H. (1918). Phys. Z. 19, 33.zbMATHGoogle Scholar
  31. Thirring, H. (1921). Phys. Z. 22, 29.zbMATHGoogle Scholar
  32. Treder, H.-J. (1972). Die Relativität der Trägheit, Akademie-Verlag, Berlin.zbMATHGoogle Scholar
  33. Treder, H.-J. (1973a). Gerlands Beitr. Geophys. 82, 92.ADSGoogle Scholar
  34. Treder, H.-J. (1973b). Symposia Mathematica VII, Academic Press, New York—London.Google Scholar
  35. Treder, H.-J. (1974a). Astron. Nachr. 295, 1 and 55.MathSciNetADSCrossRefGoogle Scholar
  36. Treder, H.-J. (1974b). Prinzipien der Dynamik bei Einstein, Hertz, Mach und Poincaré, Akademie-Verlag, Berlin.Google Scholar
  37. Treder, H.-J. (1975). Astron. Nachr. 296, 101.MathSciNetADSzbMATHCrossRefGoogle Scholar
  38. Treder, H.-J. (1976a). Astrofizika 12, 511.ADSGoogle Scholar
  39. Treder, H.-J. (1976b). Astron. Nachr. 297, 113.MathSciNetADSzbMATHCrossRefGoogle Scholar
  40. Weyl, H. (1923). Raum—Zeit—Materie, 5th ed., J. Springer, Berlin.Google Scholar
  41. Weyl, H. (1924). Na turwissenschaften 12, 197.ADSzbMATHCrossRefGoogle Scholar
  42. Yourgrau, W., and Mandelstam, S. (1960). Variational Principles in Dynamics and Quantum Theory, W. B. Saunders, London.Google Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • Hans-Jürgen Treder
    • 1
  • Horst-Heino von Borzeszkowski
    • 1
  • Alwyn van der Merwe
    • 2
  • Wolfgang Yourgrau
    • 2
  1. 1.Zentralinstitut für AstrophysikPotsdam-BabelsbergGermany
  2. 2.University of DenverDenverUSA

Personalised recommendations