Intermezzo: The Einstein Effects

  • Hans-Jürgen Treder
  • Horst-Heino von Borzeszkowski
  • Alwyn van der Merwe
  • Wolfgang Yourgrau

Abstract

According to the weak principle of equivalence, the Lagrangian describing the motion of a test particle with rest mass m in the gravitational field of a central mass M is given by the relativistic line element ds:
$$ \left({c-\frac{\mathcal{L}}{{mc}}} \right)dt=ds={{g_{{ik}}}d{x^{i}}d{x^{k}})^{{1/2}}} $$
(2.1.1)

Keywords

Kepler Problem Light Deflection Unify Field Theory Perihelion Precession Secular Perturbation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

2.1. Significance of the Post-Newtonian Kepler Problem

  1. Chazy, A. (1928, 1930). La Théorie de la Relativité et la Mécanique Céleste, Vols. 1 and 2, Gauthier-Villars, Paris.MATHGoogle Scholar
  2. Einstein, A. (1915). Sitzungsber. Preuss. Akad. Wiss., 831.Google Scholar
  3. Einstein, A. (1916). Grundlage der Allgemeinen Relativitätstheorie. J.A. Barth, Leipzig.Google Scholar
  4. Einstein, A. (1948). German original text from “Autobiographical Notes,” in P. A. Schilpp (ed.), Albert Einstein: Philosopher—Scientist, Open Court Publishing Company, La Salle—Chicago (1949), p. 76.Google Scholar
  5. Einstein, A., and Infeld, L. (1940). Ann. Math. 41, 455.MathSciNetCrossRefGoogle Scholar
  6. Einstein, A., and Infeld, L. (1949). Can. J. Math.1, 209.MathSciNetMATHCrossRefGoogle Scholar
  7. Einstein, A., Infeld, L., and Hoffmann, B. (1938). Ann. Math. 39, 65.MathSciNetADSCrossRefGoogle Scholar
  8. Fock, V. A. (1955). Teorija Prostranstwa, Vremeni i Tjagotenija, Fizmatizdat, Moscow (in Russian) [German translation: (1960). Theorie von Raum, Zeit und Gravitation, AkademieVerlag, Berlin].Google Scholar
  9. Gerber, P. (1898). Z. Math. Phys. 43, 93.Google Scholar
  10. Gerber, P. (1917). Ann. Phys. (Leipzig) 52, 415.ADSMATHGoogle Scholar
  11. Hall, A. (1895). Astron. J. 24, 49.Google Scholar
  12. Harzer, P. (1891). Astron. Nachr. 127, 82.ADSGoogle Scholar
  13. Harzer, P. (1896). Astron. Nachr. 141, 39.ADSCrossRefGoogle Scholar
  14. Isenkrahe, C. (1879). Das Rätsel von der Schwerkraft, F. Vieweg, Braunschweig.Google Scholar
  15. De Laplace, P. S. (1798–1825). Traité de Mécanique Céleste, Bachelier, Paris; also in Oeuvres, Vols. I–V, Gauthier-Villars, Paris (1878–1883).Google Scholar
  16. Leverrier, U. (1859). Ann. Obs. Imperial 5, 78.Google Scholar
  17. Levi-Civita, T. (1947). The Absolute Differential Calculus, Blackie and Son, London-Glasgow. Later edition 1950.Google Scholar
  18. Mach, E. (1912). Die Mechanik in ihrer Entwicklung, F. A. Brockhaus, Leipzig.MATHGoogle Scholar
  19. Neumann, C. (1868). Über die Prinzipien der Elektrodynamik, Universitäts-Buchhandlung, Tübingen.Google Scholar
  20. Neumann, C. (1896). Allgemeine Untersuchung über die Newtonsche Theorie der Fernwirkung, B. G. Teubner, Leipzig.Google Scholar
  21. Newcomb, S. (1895). “The elements of the four inner planets and the fundamental constants of astronomy”—Supplement to the American Ephemeris and Nautical Almanacs for1897, Government Printing Office, Washington.Google Scholar
  22. Newton, I. (1687). Philosophiae Naturalis Principia Mathematica, London; see also Isaac Newton,s Philosophiae Naturalis Principia Mathematica, Vols. 1 and II, eds. A. Koyré and J. 13. Cohen, University Press, Cambridge (1972).Google Scholar
  23. Oppenheim, S. (1920). Kritik des Newtonschen Gravitationsgesetzes, in Enzyklopädie der Mathematischen Wissenschaften, Vol. VI, 2nd ed., B. G. Teubner, Leipzig.Google Scholar
  24. Riemann, B. (1875). Schwere, Elektricität und Magnetismus, C. Rümpler, Hannover.Google Scholar
  25. Schwarzschild, K. (1916). Sitzungsber. Preuss. Akad. Wiss., 189.Google Scholar
  26. Von Seeliger, H. (1906). Münchner Ber. 36, 595.Google Scholar
  27. Tisserand, M. F. (1872). “Sur le mouvement des planètes autour du Soleil d’après la loi électrodynamique de Weber,” C. R. Acad. Sci. 175, 760.Google Scholar
  28. Tisserand, M. F. (1895, 1896). Traité de Mécanique Céleste, Vols. I—V, Gauthier-Villars, Paris.MATHGoogle Scholar
  29. Treder, H.-J. (1972). Die Relativität der Trägheit, AkademieVerlag, Berlin.MATHGoogle Scholar
  30. Treder, H.-J. (1975). Ann. Phys. (Leipzig) 32, 338.MathSciNetADSGoogle Scholar
  31. Wiechert, E. (1916). Phys. Zeitschr. 17, 442.MATHGoogle Scholar
  32. Wiechert, E. (1925). “Die Mechanik im Rahmen der Allgemeinen Physik,” in E. Lecher (ed.), Physik, B. G. Teubner, Leipzig.Google Scholar
  33. ZÖllner, C. F. (1872). Die Natur der Cometen (3rd ed. in 1883), L. Staackmann, Leipzig.Google Scholar

2.2. The Significance of Gravitational Optics Unified Field Theory

  1. Einstein, A. (1950, 1955). The Meaning of Relativity, 3rd (1950) and 5th (1955) editions, Princeton University Press. Appendix II (1950): “The Generalized Theory of Gravitation.” Appendix II (1955): “The Relativistic Theory of the NonSymmetric Field.”MATHGoogle Scholar
  2. Hlavatý, V. (1957). Geometry of Einstein’s Unified Field Theory, Noordhoff, Groningen.MATHGoogle Scholar
  3. Schrödinger, E. (1950). Space-Time Structure, University Press, Cambridge.MATHGoogle Scholar
  4. Tonnelat, M. A. (1965). Les Théories Unitaires de l’Électromagnetisme et de la Gravitation, Gauthiers-Villars, Paris.MATHGoogle Scholar

2.2. The Significance of Gravitational Optics Gravito-Optics

  1. Freundlich, E. F. (1929). Phil. Mag. 45, 303.Google Scholar
  2. Merat, P., Pecker, J. C., Vigier, J. P., and Yourgrau, W. (1974). Astron. Astrophys. 32, 471.ADSGoogle Scholar
  3. Mikhailov, A. A. (1959). Mon. Not. R. Astron. Soc. 119, 593.ADSGoogle Scholar
  4. Treder, H.-J. (1971). Ann. Phys. (Leipzig) 27, 177.MathSciNetADSGoogle Scholar
  5. Woodward, J. F. and Yourgrau, W. (1972). Nuovo Cimento 9B, 440.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • Hans-Jürgen Treder
    • 1
  • Horst-Heino von Borzeszkowski
    • 1
  • Alwyn van der Merwe
    • 2
  • Wolfgang Yourgrau
    • 2
  1. 1.Zentralinstitut für AstrophysikPotsdam-BabelsbergGermany
  2. 2.University of DenverDenverUSA

Personalised recommendations