Linearized Subfringe Interferometric Holography

  • A. F. Metherell

Abstract

This paper describes a number of methods for recording suboptical wavelength displacements or vibrations of a surface as a linear function of the irradiance of the image of the surface. The methods are an extension of conventional interferometric holography, including time averaged holography of sinusoidal vibration, double pulsed holography of sinusoidal vibrations or general displacements, time averaged holography of linear motion, and real time interferometric holography. The basic concept described here was first presented at the Second International Symposium on Acoustical Holography and published in the proceedings. The theory was later expanded and presented at the Annual Meeting of the Optical Society of America in October 1969. This paper presents the theoretical analysis of linearized subfringe interferometric holography and some experimental results. The theory is expanded to show how this can be used to record acoustical holograms.

Keywords

Vibration Amplitude Holographic Interferometry Surface Vibration Object Beam Double Exposure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. L. Powell and K. A. Stetson, J. Opt. Soc Am., 55, 1593 (1965).ADSCrossRefGoogle Scholar
  2. 2.
    K. A. Stetson, and R. L. Powell, J. Opt. Soc Am., 56 (9), 1161–1166 (1966).ADSCrossRefGoogle Scholar
  3. 3.
    L. O. Heflinger, R. F. Wuerker, and R. G. Brooks, J. Appl. Phys., 37, 642 (1966).ADSCrossRefGoogle Scholar
  4. 4.
    R. E. Brooks, L. O. Heflinger, and R. F. Wuerker, IEEE J. Quantum Electronics, QE-2, 275 (1966).ADSCrossRefGoogle Scholar
  5. 5.
    R. E. Brooks, L. O. Heflinger, and R. F. Wuerker, Appl. Phys. Letters, 7, 248 (1965).ADSCrossRefGoogle Scholar
  6. 6.
    J. M. Burch, A. E. Ennos, and R. J. Wilton, Nature, 209, 1015 (1966).ADSCrossRefGoogle Scholar
  7. 7.
    A. F. Metherell, S. Spinak, and E. J. Pisa, “Temporal Reference Acoustical Holography,” paper presented at Second International Symposium on Acoustical Holography, Huntington Beach, California, March 1969, Applied Optics, 8 (8), 1543–1550 (1969).ADSCrossRefGoogle Scholar
  8. 8.
    A. F. Metherell, S. Spinak, and E. J. Pisa, J. Opt. Soc. Am., 59 (11), 1534A (1970).Google Scholar
  9. 9.
    E. J. Pisa, A. F. Metherell, and S. Spinak, J. Opt. Soc. Am., 59 (11), 1534A (1970).Google Scholar
  10. 10.
    S. Spinak, E. J. Pisa, and A. F. Metherell, J. Opt. Soc. Am., 59 (11), 1535A (1970).Google Scholar
  11. 11.
    D. B. Neumann, “The Effect of Scene Motion on Holography,” (1967).Google Scholar
  12. 12.
    C. C. Aleksoff, Applied Optics, 10, 1329 (1971).ADSCrossRefGoogle Scholar
  13. 13.
    E. Archbold and A. E. Ennos, Nature, 217, 942 (1968).ADSCrossRefGoogle Scholar
  14. 14.
    B. M. Watrasiewicz and P. Spicer, Nature, 217, 1142 (1968).ADSCrossRefGoogle Scholar
  15. 15.
    P. Shajenko and C. D. Johnson, Appl. Phys. Lett., 13, 44 (1968).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1974

Authors and Affiliations

  • A. F. Metherell
    • 1
  1. 1.A Subsidiary of McDonnell Douglas CorporationActron Industries, Inc.MonroviaUSA

Personalised recommendations