Skip to main content

Density-Functional Theory and Excitation Energies

  • Chapter
Density Functional Methods In Physics

Part of the book series: NATO ASI Series ((ASIB,volume 123))

Abstract

During the past decade, the local-density (LD) approximation within density-functional (DF) theory has been the most important method for obtaining the electronic properties of realistic systems. The limitations of the method have to a large extent been computational in nature rather than theoretical. The conceptually simple one-particle equations arising in the method have often been too difficult to solve in systems with low symmetry such as amorphous systems or surfaces. However, due to our increased under­standing of these systems the computational techniques are quickly developing, and we forsee an even greater importance of the method in the near future. The theoretical limitations of the method will then become more evident and result in an urgent need for improve­ments beyond the LD approximation. Such a need exists already to­day in many systems such as, e.g., atoms and molecules. The des­cription of correlation effects in these systems is necessary and important and the answers provided by the LD approximations are often too poor to be of practical use. Unfortunately, for a long time, only minor theoretical advances were made since the modern version of DF theory was laid down by Hohenberg, Kohn, and Sham1,2 in the mid sixties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Hohenberg and W. Kohn, Phys. Rev. 136: B864

    Google Scholar 

  2. W. Kohn and L.J. Sham, Phys. Rev. 140: A1133

    Google Scholar 

  3. Gunnarsson and B.I. Lundqvist, Phys. Rev. B13: 4274 (1976).

    ADS  Google Scholar 

  4. D.C. Langreth and J.P. Perdew, Phys. Rev. B15:2884 (1977); Solid State Commun. 31: 567 (1979).

    ADS  Google Scholar 

  5. D.C. Langreth and M.J. Mehl, Phys. Rev. B28: 1809 (1983).

    MathSciNet  ADS  Google Scholar 

  6. A.R. Williams and U. von Barth, in “ Theory of the Inhomogeneous Electron Gas,” S. Lundqvist and N.H. March, ed., Plenum Press, New York(1983).

    Google Scholar 

  7. M. Levy, Proc. Natl. Acad. Sci. USA 76: 6062 (1979).

    Article  Google Scholar 

  8. E.H. Lieb in “ Physics as a Natural Philosophy,” A. Shimony and H. Feshbach, ed., MIT press, Cambridge Mass (1982).

    Google Scholar 

  9. A.K. Rajagopal, in “ Advances in Chemical Physics,” I. Prigogine and S.A. Rice, ed., vol.41, p. 59 Wiley, New York (1980).

    Google Scholar 

  10. Theory of the Inhomogenous Electron Gas,“ S. Lundqvist and N.H. March, ed., Plenum New York (1983).

    Google Scholar 

  11. J. Callaway and N.H. March, in “ Solid State Physics,” H. Ehrenreich, F. Seitz, and D. Turnbull, ed., Academic, New York, to be published.

    Google Scholar 

  12. NATO Advanced Study Institute on the Electronic Structure of Complex Systems,“ W. Temmerman and P. Phasiseau, ed., Plenum, New York, to be published.

    Google Scholar 

  13. Proceedings of the workshop on “Many-Body Phenomena at Surfaces,” D.C. Langreth and H. Suhl, ed., Academic, New York, to be published.

    Google Scholar 

  14. U. von Barth, in “ NATO Advanced Study Institute on the Electronic Structure of Complex Systems,” W. Temmerman and P. Phasiseau, ed., Plenum, New York, to be published.

    Google Scholar 

  15. U. von Barth, in the proceedings of the workshop on “ Many-Body Phenomena at Surfaces,” D.C. Langreth and H. Suhl, ed., Academic, New York, to be published.

    Google Scholar 

  16. A similar procedure has been used independently by D.W. Smith, S. Jagannathan, and G.S. Handler, Int. J. Quant. Chem. S13:103 (1979) for the case of the He atom.

    Google Scholar 

  17. U. von Barth and R. Car, to be published.

    Google Scholar 

  18. C.-0.Almbladh and A.C. Pedroza, Phys. Rev. A, to be published.

    Google Scholar 

  19. C.-0. Almbladh and U. von Barth, to be published.

    Google Scholar 

  20. The long-range behaviour of the density to leading order, i.e. the exponential fall-off, has been found earlier by M. Levy, unpublished report 1975, and by J. Katriel and E.R. Davidson, Proc. Nat. Acad. Sci. USA 77: 4403 (1980).

    Article  Google Scholar 

  21. U. von Barth and L. Hedin, J. Phys. C5: 1629 (1972);

    ADS  Google Scholar 

  22. A.K. Rajagopal and J. Callaway, Phys. Rev. B7: 1912 (1973).

    Article  ADS  Google Scholar 

  23. D.C. Langreth, to be published.

    Google Scholar 

  24. L.J. Sham, to be published.

    Google Scholar 

  25. It is not difficult to show, using e.g. perturbation theory, that the exponential fall-off of atom B in this region is the same as for the free atom.

    Google Scholar 

  26. Notice that this unphysical result would not arise if the two atoms were identical.

    Google Scholar 

  27. U. Fano, Phys. Rev. 124:18866 (1961); P.W. Anderson, Phys. Rev. 124: 41 (1961).

    Google Scholar 

  28. H. Siegbahn and L. Karlsson, in “ Handbuch der Physik ”, vol.31, W. Mehlhorn, ed., Springer, Berlin, p. 215 (1982).

    Google Scholar 

  29. T.A. Patterson, H. Hotop, A. Kasdan, D.W. Norcross, and W.C. Lineberger, Phys. Rev. Lett. 32: 189 (1974).

    Article  ADS  Google Scholar 

  30. J.P. Perdew and M.R. Norman, Phys. Rev. B26: 5445 (1982).

    ADS  Google Scholar 

  31. J.P. Perdew and M. Levy, Phys. Rev. Lett. 14: 1884 (1983).

    Article  ADS  Google Scholar 

  32. L.J. Sham and M. Schlüter, Phys. Rev. Lett. 14: 1888 (1983).

    Article  Google Scholar 

  33. J.C. Slater, Adv. Quantum Chem. 6: 1 (1972);

    Article  ADS  Google Scholar 

  34. C.-0. Almbladh and U. von Barth, Phys. Rev. B13: 3307 (1976);

    ADS  Google Scholar 

  35. J.F. Janak, Phys. Rev. B18: 7165 (1978).

    ADS  Google Scholar 

  36. N.D. Mermin, Phys. Rev. 137: A1441 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  37. J.P. Perdew, R.G. Parr, M. Levy, and J.L. Balduz, Phys. Rev. Lett. 49: 1691 (1982).

    Article  ADS  Google Scholar 

  38. U. Rössler, in “ Rare-gas solids ”, M.L. Klein and J.A. Venables, ed., Academic, N.Y. (1975).

    Google Scholar 

  39. J.P. Perdew, (Private communication).

    Google Scholar 

  40. U. von Barth and R. Car, (unpublished).

    Google Scholar 

  41. C.-0. Almbladh (unpublished).

    Google Scholar 

  42. J.P. Perdew and M.R. Norman, Phys. Rev. B26: 5445 (1982).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Almbladh, C.O., von Barth, U. (1985). Density-Functional Theory and Excitation Energies. In: Dreizler, R.M., da Providência, J. (eds) Density Functional Methods In Physics. NATO ASI Series, vol 123. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0818-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0818-9_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0820-2

  • Online ISBN: 978-1-4757-0818-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics