Advertisement

Density Functionals for Correlation Energies of Atoms and Molecules

  • Hermann Stoll
  • Andreas Savin
Part of the NATO ASI Series book series (volume 123)

Abstract

The correlation energy, Ec, is usually defined as the difference of the exact (non-relativistic) energy, E, and the Hartree-Fock (HF) energy, EHF .1 Ec is a very small part of E only (1.4% for the He atom, 0.3% for Ne, 0.1% for Ar), but it is non-negligible in absolute value: for valence-shell removal, ...Ec is 1.1 eV for He, 9.5 eV for Ne, and 9.3 eV for Ar. Inclusion of Ec is important in cases where the number of (strongly interacting) electron pairs is changed, for dissociation energies (De), ionization potentials and excitation energies, e.g.. Correlation is responsible for 23% of Dein the case of H2, and for 84% of De in the case of Li2; Na2 and K2 are unbound at the HF level.

Keywords

Correlation Energy Configuration Interaction Correlation Contribution Ionization Energy Configuration Interaction Calculation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. O. Löwdin, Quantum theory of many-particle systems I, Phys. Rev. 97: 1474 (1955)MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. 2.
    H. F. Schaefer III (ed.), “Methods of Electronic Structure Theory”, Plenum Press, New York (1977)Google Scholar
  3. 3.
    W. Meyer, PNO-CI studies of electron correlation effects I, J. Chem. Phys. 58: 1017 (1973)ADSCrossRefGoogle Scholar
  4. 4.
    M. A. Robb, Correlation energy as a stabilizing factor in molecular structure, in: “Molecular Structure and Conformation”, I. G. Csizmadia, ed., Elsevier, Amsterdam (1982)Google Scholar
  5. 5.
    W. Meyer, P. Botschwina, P. Rosmus, and H. J. Werner, Computed physical properties of small molecules, in: “Computational Methods in Chemistry”, J. Bargon, ed., Plenum Press, New York (1980)Google Scholar
  6. 6.
    D. Cremer, Thermochemical data from ab-initio calculations II, J. Comput. Chem. 3: 165 (1982)CrossRefGoogle Scholar
  7. 7.
    A. Savin, Die explizite Behandlung von Korrelationseffekten in Dichtefunktional-and Pseudopotentialmethoden, thesis, Stuttgart (1983)Google Scholar
  8. 8.
    A. C. Hurley, Thermochemistry in the Hartree-Fock approximation, Adv. Quantum Chem. 7: 315 (1973)CrossRefGoogle Scholar
  9. 9.
    W. Meyer and P. Rosmus, PNO-CI and CEPA studies of electron correlation effects III, J. Chem. Phys. 63: 2356 (1975)ADSCrossRefGoogle Scholar
  10. 10.
    M. Levy, Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem, Proc. Natl. Acad. Sci. (USA) 76: 6062 (1979)ADSCrossRefGoogle Scholar
  11. 11.
    P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136: B864 (1964)MathSciNetCrossRefGoogle Scholar
  12. 12.
    W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140: A1133 (1965)MathSciNetCrossRefGoogle Scholar
  13. 13.
    U. von Barth and L. Hedin, A local exchange-correlation potential for the spin-polarized case I, J. Phys. C 5: 1629 (1972)ADSCrossRefGoogle Scholar
  14. 14.
    O. Gunnarsson and B. I. Lundqvist, Exchange and correlation in atoms, molecules and solids by the spin-density functional formalism, Phys. Rev. B 13: 4274 (1976)CrossRefGoogle Scholar
  15. 15.
    S. H. Vosko, L. Wilk, and M. Nusair, Accurate spin-dependent electron liquid correlation energies for local-spin density calculations: a critical analysis, Can. J. Phys. 58: 1200 (1980)ADSGoogle Scholar
  16. 16.
    D. M. Ceperley and B. J. Alder, Ground state of the electron gas by a stochastic method, Phys. Rev. Lett. 45: 566 (1980)ADSCrossRefGoogle Scholar
  17. 17.
    L. Wilk and S. H. Vosko, Estimates of non-local corrections to total ionisation and single-particle energies, J. Phys. C 15: 2139 (1982)ADSCrossRefGoogle Scholar
  18. 18.
    G. S. Painter and F. W. Averill, Bonding in the first-row diatomic molecules within the local spin-density approximation, Phys. Rev. B 26: 1781 (1982)CrossRefGoogle Scholar
  19. 19.
    E. Clementi, Correlation energy for atomic systems, J. Chem. Phys. 38: 2248 (1963); 39: 175 (1963)Google Scholar
  20. 20.
    B. Y. Tong and L. J. Sham, Application of a self-consistent scheme including exchange and correlation effects to atoms, Phys. Rev. 144: 1 (1966)CrossRefGoogle Scholar
  21. 21.
    R. D. Cowan, Atomic self-consistent-field calculations using statistical approximations for exchange and correlation, Phys. Rev. 163: 54 (1967)CrossRefGoogle Scholar
  22. 22.
    H. Stoll, C. M. E. Pavlidou, and H. Preuss, On the calculation of correlation energies in the spin-density functional formalism, Theoret. Chim. Acta 49: 143 (1978)CrossRefGoogle Scholar
  23. 23.
    E. Eggarter and T. P. Eggarter, Atomic correlation energies, J. Phys. B 11: 1157, 2069, 2969 (1978)Google Scholar
  24. 24.
    J. P. Perdew and A. Zunger, Self-interaction correction to densityfunctional approximations for many-electron systems, Phys. Rev. B 23: 5048 (1981)CrossRefGoogle Scholar
  25. 25.
    P. Rosmus and W. Meyer, PNO-CI and CEPA studies of electron correlation effects IV, J. Chem. Phys. 66: 13 (1977)ADSCrossRefGoogle Scholar
  26. 26.
    O. Gunnarsson and R. O. Jones, Self-interaction corrections in the density-functional formalism, Solid State Commun. 37: 249 (1981)ADSCrossRefGoogle Scholar
  27. 27.
    H. Stoll, E. Golka, and H. Preuss, Correlation energies in the spin-density functional formalism II, Theoret. Chim. Acta 55: 29 (1980)CrossRefGoogle Scholar
  28. 28.
    J. P. Perdew, E. R. McMullen and A. Zunger, Density functional theory of the correlation energy in atoms and ions: a simple analytic model and a challenge, Phys. Rev. A 23: 2785 (1981)CrossRefGoogle Scholar
  29. 29.
    A. Savin, H. Stoll and H. Preuss, Pair correlation energies and local spin-density functionals, in: “Local Density Approximations in Quantum Chemistry and Solid State Physics”, J. Avery and J. P. Dahl, eds., Plenum Press, New York, in pressGoogle Scholar
  30. 30.
    K. Jankowski, P. Malinowski and M. Polasik, Second-order correlation energies of Mg and Ar, J. Phys. B 12: 3157 (1979)ADSCrossRefGoogle Scholar
  31. 31.
    A. Savin, P. Schwerdtfeger, H. Preuss, H. Silberbach, and H. Stoll, Relativistic effects on the contribution of the local-spin-density correlation energy to ionization potentials, Chem. Phys. Lett. 98: 226 (1983)ADSCrossRefGoogle Scholar
  32. 32.
    P. Fuentealba, unpublished resultsGoogle Scholar
  33. 33.
    H. Stoll, P. Fuentealba, M. Dolg, J. Flad, L. v. Szentpâly and H. Preuss, Cu and Ag as one-valence-electron atoms, J. Chem. Phys., submittedGoogle Scholar
  34. 34.
    L. A. Cole and J. P. Perdew, Calculated electron affinities of elements, Phys. Rev. A 25: 1265 (1982)CrossRefGoogle Scholar
  35. 35.
    G. Verhaegen and C. M. Moser, Hartree-Fock, correlation and term energies of valence excited states of atoms and ions of the second-row of the periodic table, Mol. Phys. 3: 478 (1970)Google Scholar
  36. 36.
    P. Schwerdtfeger, H. Stoll and H. Preuss, A study of potential curve crossing in X-Ar complexes (X=Mg,Ca,Sr,Ba), J. Phys. B 15: 1061 (1982)ADSCrossRefGoogle Scholar
  37. 37.
    O. Gunnarsson and R. O. Jones, Extensions of the LSD approximation in density functional calculations, J. Chem. Phys. 72: 53–57 (1980)CrossRefGoogle Scholar
  38. 38.
    A. Savin, in preparationGoogle Scholar
  39. 39.
    B. I. Dunlap, private communicationGoogle Scholar
  40. 40.
    G. C. Lie, J. Hinze, and B. Liu, Valence excited states of CH, J. Chem. Phys. 59: 1872 (1973)ADSCrossRefGoogle Scholar
  41. 41.
    M. F. Guest and D. M. Hirst, Ab-initio potential curves for the valence states of the NH+ ion, Mol. Phys. 34: 1611 (1977)Google Scholar
  42. 42.
    H. Preuss, H. Stoll, U. Wedig, and Th. Krüger, A combination of pseudo-potentials and density functionals, Int. J. Quantum Chem. 19: 113 (1981)Google Scholar
  43. 43.
    J. Flad, G. Igel, M. Dolg, H. Stoll and H. Preuss, A combination of pseudootentials and density functionals: results for Lim+, Nam+ and Kn clusters (n44, m=o, 1), Chem. Phys. 75: 331 ( 1983CrossRefGoogle Scholar
  44. 44.
    J. L. Martins, R. Car, and J. Buttet, Electronic properties of alkali trimers, J. Chem. Phys. 78: 5646 (1983)ADSCrossRefGoogle Scholar
  45. 45.
    M. R. A. Blomberg, P. E. M. Siegbahn, and B. O. Roos, The ground-state potential curve of the Beryllium dimer, Int. J. Quantum Chem S 14: 229 (1980)Google Scholar
  46. 46.
    B. Liu and A. D. McLean, Ab-initio potential curve for Be2(1Zy+) from the interacting correlated fragments method, J. Chem. Phys. 72: 3418 (1980)ADSCrossRefGoogle Scholar
  47. 47.
    E. J. Baerends and P. Ros, Evaluation of the LCAO Hartree-Fock-Slater method, Int. J. Quantum Chem. S 12: 169 (1978)Google Scholar
  48. 48.
    A. Gupta and R. J. Boyd, Density difference representation of electron correlation, J. Chem. Phys. 68: 1951 (1978)ADSCrossRefGoogle Scholar
  49. 49.
    D. W. Smith, S. Jagannathan, and G. S. Handler, Density-functional theory of atomic structure I, Int. J. Quantum Chem. S 13: 103 (1979)Google Scholar
  50. 50.
    A. Savin, U. Wedig, H. Stoll, and H. Preuss, The correlated density of the Li atom: a test for density functionals and semi-empirical pseudopotentials, Chem. Phys. Lett. 92: 503 (1982)ADSCrossRefGoogle Scholar
  51. 51.
    B. Y. Tong, Exchange-and correlation-energy calculations in finite systems, Phys. Rev. A 4: 1375 (1971)CrossRefGoogle Scholar
  52. 52.
    W. J. Schneider, Statistical correlation energies in atomic and molecular systems, J. Phys. B 11: 2589 (1978)ADSCrossRefGoogle Scholar
  53. 53.
    S. K. Ma and K. A. Brueckner, Correlation energy of an electron gas with a slowly varying high density, Phys. Rev. 165: 18 (1968)CrossRefGoogle Scholar
  54. 54.
    D. C. Langreth and M. J. Mehl, Easily implementable non-local exchange-correlation energy functional, Phys. Rev. Lett. 47: 446 (1981)ADSCrossRefGoogle Scholar
  55. 55.
    A. K. Rajagopal, Theory of inhomogeneous electron systems: spindensity-functional formalism, Adv. Chem. Phys. 41: 59 (1980)Google Scholar
  56. 56.
    P. Ros, Exact and simulated Coulomb holes and Coulomb correlation potentials for the ground state of the He isoelectronic series, Chem. Phys. 42: 9 (1979)ADSCrossRefGoogle Scholar
  57. 57.
    I. L. Cooper and C. N. M. Pounder, Effect of modified virtual orbitals on local correlation holes inFCN, Int. J. Quantum Chem. 23: 257 (1983)CrossRefGoogle Scholar
  58. 58.
    J. Keller and J. L. Gazquez, Self-consistent field electron-gas local-spin-density model including correlation for atoms, Phys. Rev. A 20: 1289 (1979)CrossRefGoogle Scholar
  59. 59.
    J. A. Alonso and L. C. Balbâs, A non-local approximation to the correlation energy of inhomogeneous electron systems, Phys. Lett. A 81A: 467 (1981)ADSCrossRefGoogle Scholar
  60. 60.
    O. Gunnarsson, M. Jonson, and B. I. Lundqvist, Descriptions of exchange and correlation effects in inhomogeneous electron systems, Phys. Rev. B 20: 3136 (1979)CrossRefGoogle Scholar
  61. 61.
    J. F. Dobson and J. H. Rose, Orbital self-interaction in Hartree-Fock and density functional theories, J. Phys. C 15: L1183 (1982)ADSCrossRefGoogle Scholar
  62. 62.
    G. C. Lie and E. Clementi, Study of the electronic structure of molecules XXI,XXII, J. Chem. Phys. 60: 1275, 1288 (1974)ADSCrossRefGoogle Scholar
  63. 63.
    J. Lievin, J. Breulet, and G. Verhaegen, A method for molecular correlation energy calculations, Theoret. Chim. Acta 60: 339 (1981)CrossRefGoogle Scholar
  64. 64.
    R. Colle and O. Salvetti, Approximate calculation of the correlation energy for the closed and open shells, Theoret. Chim. Acta 53: 55 (1979)CrossRefGoogle Scholar
  65. 65.
    R. McWeeny, Present status of the correlation problem, in: “The New World of Quantum Chemistry”, B. Pullman and R. Parr, eds., Reidel, Dordrecht (1976)Google Scholar
  66. 66.
    J. W. Moskowitz, K. E. Schmidt, M. A. Lee, and M. H. Kalos, Monte-Carlo variational study of Be: a survey of correlated wave functions, J. Chem. Phys. 76: 1064 (1982)ADSCrossRefGoogle Scholar
  67. 67.
    M. H. Ang, K. Yates, I. G. Csizmadia, and R. Daudel, Relationship of correlation energy and size, Int. J. Quantum Chem. 20: 793 (1980)CrossRefGoogle Scholar
  68. 68.
    A. Dalgarno, C. Boettcher, and G. A. Victor, Pseudopotential calculation of atomic interactions, Chem. Phys. Lett. 7: 265 (1970)ADSCrossRefGoogle Scholar
  69. 69.
    J. Migdalek and W. E. Baylis, Core-polarization, relaxation, and relativistic effects in the first ionization potentials for some systems in Cu, Ag, and Au isoelectronic sequences, Can. J. Phys. 60: 1317 (1982)ADSGoogle Scholar
  70. 70.
    P. Fuentealba, H. Preuss, H. Stoll, and L. v. Szentpâly, A proper account of core-polarization with pseudopotentials, Chem. Phys. Lett. 89: 418 (1982)ADSCrossRefGoogle Scholar
  71. 71.
    W. Müller, J. Flesch, and W. Meyer, Treatment of inter-shell correlation effects in ab-initio calculations by use of core polarization potentials, J. Chem. Phys., submittedGoogle Scholar
  72. 72.
    J. Migdalek and W. E. Baylis, Electron affinities for halogens calculated in the relativistic Hartree-Fock approach with atomic polarization, Phys. Rev. A 26: 1839 (1982)CrossRefGoogle Scholar
  73. 73.
    A. Savin and P. Fuentealba, in preparationGoogle Scholar
  74. 74.
    J. K. O’Connell and N. F. Lane, Nonadjustable exchange-correlation model for electron scattering from closed-shell atoms and molecules, Phys. Rev. A 27: 1893 (1983)CrossRefGoogle Scholar
  75. 75.
    T. Ziegler, A. Rauk, and E. J. Baerends, On the calculation of multiplet energies by the Hartree-Fock-Slater method, Theoret. Chim. Acta 43: 261 (1977)CrossRefGoogle Scholar
  76. 76.
    U. von Barth, Local-density theory of multiplet structure, Phys. Rev. A 20: 1693 (1979)CrossRefGoogle Scholar
  77. 77.
    D. C. Langreth and M. J. Mehl, Beyond the local-density approximation in calculations of ground-state electronic properties, Phys. Rev. B 28: 1809 (1983)CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Hermann Stoll
    • 1
  • Andreas Savin
    • 1
  1. 1.Institut für Theoretische ChemieUniversität StuttgartStuttgart 80West Germany

Personalised recommendations