Skip to main content

A Density Functional Formalism for Condensed Matter Systems

  • Chapter
Density Functional Methods In Physics

Part of the book series: NATO ASI Series ((ASIB,volume 123))

Abstract

A very large part of research in condensed matter physics may be considered as investigations of inhomogeneous electron systems. The inhomogeneities are due to nuclear charges located in certain geometrical forms (single nuclear charge for an atom, a small number of several nuclear charges distributed spatially to form small molecules, or a large number of nuclei arranged in a regular spatial three-dimensional array to form a solid etc.). We will not be interested here in amorphous systems even though a density functional scheme is being used in the liquid state research. Also we will not be interested in the detailed properties of the nuclei themselves and treat them as merely positively charged entities with no intrinsic character to them. One class of questions concerns the electronic properties including its spin effects and our main attention will be focussed on these. There have been some attempts to examine nuclear motions (molecular vibrations and phonons in solids) using density functional formalism; but this has not yet been explored fully as will be pointed out later. The central theme in the original density-functional formalism was that the ground state (equilibrium) properties depend only on the ground state (equilibrium) density of the electrons and the nuclei. Stated in this way, we may think of these problems as another facet of Relativistic Quantum Electrodynamics of many electrons and structureless charge compensating nuclei, which for all practical purposes can be treated as classical objects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. S. Fradkin, Proc. (Trudy) Lebedev Phys. Inst. 29, 1 (1967).

    Google Scholar 

  2. B. Bezzerides and D. F. Dubois, Ann. Phys. (N.Y.) 70, 10 (1972).

    Article  ADS  Google Scholar 

  3. R. L. Bowers, J. A. Campbell, and R. L. Zimmerman, Phys. Rev. D 7, 2278 (1973).

    Article  ADS  Google Scholar 

  4. C. W. Bernard, Phys. Rev. D 9, 3312 (1974).

    ADS  Google Scholar 

  5. L. Dolan and R. Jackiw, Phys. Rev. D 9, 3320 (1974).

    Article  ADS  Google Scholar 

  6. S. Weinberg, Phys. Rev. D 9, 3357 (1974).

    Article  ADS  Google Scholar 

  7. S. A. Chin, Ann. Phys. (N.Y.) 108, 301 (1977).

    Article  ADS  Google Scholar 

  8. A. Bechler, Ann. Phys. (N.Y.) 135, 19 (1981). This paper gives references to many other studies on relativistic many-body theory of matter at high densities and temperatures relevant to astrophysical phenomena and nuclear matter.

    Google Scholar 

  9. A. K. Rajagopal, Adv. in Chem. Phys. 41, 59 (1980).

    Google Scholar 

  10. U. Gupta and A. K. Rajagopal, Phys. Rev. C 87, 259 (1982).

    Google Scholar 

  11. M. V. Ramana and A. K. Rajagopal, Adv. in Chem. Phys. 54, 231 (1983).

    Google Scholar 

  12. W. Kohn and P. Vashishta, review article in Physics of Solids and Liquids, (eds. S. Lundqvist and N. H. March) Plenum Press (to appear, 1983 ).

    Google Scholar 

  13. J. Callaway and N. H. March, review article in Advances in Solid State Physics, (eds. H. Ehrenreich, F. Seitz, and D. Turnbull) Academic Press (N.Y.) (to appear, 1983 ).

    Google Scholar 

  14. A. R. Williams and U. von Barth, review article in Physics of Solids and Liquids, (eds. S. Lundqvist and N. H. March) Plenum Press (to appear, 1983 ).

    Google Scholar 

  15. M. Levy, Proc. Natl. Acad. Sci. (USA) 76, 6062 (1979) and M. Levy, Phys. Rev. A 26, 1200 (1982).

    Article  Google Scholar 

  16. E. H. Lieb, in Physics as Natural Philosophy, (ed. by A. Shimony and H. Feshbach ), MIT Press, Cambridge, Mass., (1982).

    Google Scholar 

  17. M. W. C. Dharma-wardana and F. Perrot, Phys. Rev. A 26, 2096 (1982).

    Article  ADS  Google Scholar 

  18. M. W. C. Dharma-wardana, F. Perrot, and G. C. Aers, Phys. Rev. A 28, 344 (1983).

    Article  ADS  Google Scholar 

  19. J. Capitani, R. F. Nalewajski, and R. G. Parr, J. Chem. Phys. 76, 568 (1982).

    Article  ADS  Google Scholar 

  20. M. P. Das, M. V. Ramana, and A. K. Rajagopal, Phys. Rev. A 22, 9 (1980).

    Article  ADS  Google Scholar 

  21. F. Perrot, Phys. Rev. A 25, 489 (1982).

    Article  ADS  Google Scholar 

  22. F. Perrot, Phys. Rev. A 26, 1035 (1982).

    Article  ADS  Google Scholar 

  23. U. Gupta and A. K. Rajagopal, J. Phys. B: Atomic and Mol. Phys. 12, 2703 (1979); 14, 2309 (1981).

    Article  Google Scholar 

  24. U. Gupta and A. K. Rajagopal, Phys. Rev. A 21, 2064 (1980) and A 22, 2792 (1980).

    Article  ADS  Google Scholar 

  25. U. von Barth, review article in the Nato Advanced Study Institute held in Gent, July 1982.

    Google Scholar 

  26. F. A. Parpia and W. R. Johnson, J. Phys. B: At. and Mol. Phys. 16, L375 (1983), and private communication (1983).

    Google Scholar 

  27. Ann-Marie Martensson, Physica Scripta 21, 293 (1980).

    Article  ADS  Google Scholar 

  28. D. D. Koelling and A. H. MacDonald, review article in the Nato Summer School Lectures, Burnaby B.C., Summer (1981).

    Google Scholar 

  29. N. D. Lang, review article in Physics of Solids and Liquids, (eds. S. Lundqvist and N. H. March) Plenum Press, (to appear, 1983 ).

    Google Scholar 

  30. R. Colle and O. Salvetti, J. Chem. Phys. 79, 1404 (1983).

    ADS  Google Scholar 

  31. J. P. Perdew, R. G. Parr, M. Levy, and J. L. Balduz, Jr., Phys. Rev. Lett. 49, 1691 (1982).

    Article  ADS  Google Scholar 

  32. R. A. Harris and J. A. Cina, J. Chem. Phys. 79, 1381 (1983).

    Article  ADS  Google Scholar 

  33. A. H. MacDonald, J. Phys. C: Solid State Phys. 16, 3869 (1983).

    Article  ADS  Google Scholar 

  34. Bu-Xing Xu, A. K. Rajagopal, and M. V. Ramana, J. Phys. C: Solid State Phys. (to appear, 1983 ).

    Google Scholar 

  35. G. E. Bauer, Phys. Rev. B 27, 5912 (1983).

    Article  ADS  Google Scholar 

  36. G. Zumbach and K. Maschke, Phys. Rev. A 28, 544 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  37. A. K. Rajagopal, unpublished notes (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Rajagopal, A.K. (1985). A Density Functional Formalism for Condensed Matter Systems. In: Dreizler, R.M., da Providência, J. (eds) Density Functional Methods In Physics. NATO ASI Series, vol 123. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0818-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0818-9_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0820-2

  • Online ISBN: 978-1-4757-0818-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics