Density Functionals for Coulomb Systems

  • Elliott H. Lieb
Part of the NATO ASI Series book series (volume 123)

Abstract

The idea of trying to represent the ground state (and perhaps some of the excited states as well) of atomic, molecular, and solid state systems in terms of the diagonal part of the one-body reduced density matrix ρ(x) is an old one. It goes back at least to the work of Thomas [1] and Fermi [2] in 1927. In 1964 the idea was conceptually extended by Hohenberg and Kohn (HK) [3]. Since then many variations on the theme have been introduced. As the present article is not meant to be a review, I shall not attempt to list the papers in the field. Some recent examples of applications are Refs. 4 and 5. Some recent examples of theoretical papers which will play a role here are Refs. 6–12. A bibliography can be found in the recent review article of Bamzai and Deb [13].

Keywords

Density Matrix Variational Principle Pure State Ground State Energy Coulomb Repulsion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.H. Thomas, Proc. Camb. Phil. Soc. 23: 542 (1927).ADSMATHCrossRefGoogle Scholar
  2. 2.
    E. Fermi, Rend. Accad. Naz. Lincei 6: 602 (1927).Google Scholar
  3. 3.
    P.Hohenberg and W. Kohn, Phys. Rev. B136: 864 (1964).MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    M.M. Morell, R.G. Parr and M. Levy, J. Chem. Phys. 62: 549 (1975).ADSCrossRefGoogle Scholar
  5. 5.
    R.G. Parr, S. Cadre and L.J. Bartolotti, Proc. Natl. Acad. Sci. 76: 2522 (1979).ADSCrossRefGoogle Scholar
  6. 6.
    R.A. Donnelly and R.G. Parr, J. Chem. Phys. 69: 4431 (1978).ADSCrossRefGoogle Scholar
  7. 7.
    H. Englisch and R. Englisch, “Hohenberg-Kohn theorem and non-vrepresentable densities”, Physica A, to be published.Google Scholar
  8. 8.
    T.L. Gilbert, Phys. Rev. B6: 211 (1975).Google Scholar
  9. 9.
    J.E. Harriman, Phys. Rev. A6: 680 (1981).Google Scholar
  10. 10.
    M. Levy, Proc. Natl. Acad. Sci. USA 76: 6062 (1979).ADSCrossRefGoogle Scholar
  11. 11.
    M. Levy, Phys. Rev. A26: 1200 (1982).ADSCrossRefGoogle Scholar
  12. 12.
    S.M. Valone, J. Chem. Phys. 73:1344 (1980); ibid. 73: 4653 (1980).Google Scholar
  13. 13.
    A.S. Bamazai and B.M. Deb, Rev. Mod. Phys. 53:95 (1981). Erratum, 53: 593 (1981).Google Scholar
  14. 14.
    E.H. Lieb and B. Simon, Adv. Math. 23:22 (1977) See also Thomas-Fermi theory revisited, Phys. Lett.31:681 (1973. See also Refs. 16 and 25.Google Scholar
  15. 15.
    M. Hoffmann-Ostenhof and T. Hoffmann-Ostenhof, Phys. Rev. A16: 1782 (1977).MathSciNetADSGoogle Scholar
  16. 16.
    E.H. Lieb, Rev. Mod. Phys. 48: 553 (1976).MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    N.H. March and W.H. Young, Proc. Phys. Soc. 72: 182 (1958).ADSMATHCrossRefGoogle Scholar
  18. 18.
    M. Reed and B. Simon, Methods of Modern Mathematical Physics (Academic. New York,1978), Vol. 4.Google Scholar
  19. 19.
    S. Mazur, Studia Math. 4: 70 (1933).Google Scholar
  20. 20.
    R.B.Israel, Convexity in the Theory of Lattice Gases(Princeton NJ. (1979).Google Scholar
  21. 21.
    E.H. Lieb and W.E. Thirring, “Inequalities for the moments of the eigenvalues of the Schrödinger hamiltonian and their relation to Sobolev inequalities”, in Studies in Mathematical Physics, E.H. Lieb, B. Simon and A.S. Wightman, Eds. (Princeton U.P., Princeton, N.J. 1976). See also Phys. Rev. Lett. 687 (1975); Errata 35:1116 (1975).Google Scholar
  22. 22.
    E.H. Lieb, Am. Math. Soc. Proc. Symp. Pure Math. 36: 241 (1980).MathSciNetCrossRefGoogle Scholar
  23. 23.
    E.H. Lieb, Phys. Lett. A70: 444 (1979).MathSciNetCrossRefGoogle Scholar
  24. 24.
    E.H. Lieb and S. Oxford, Int. J. Quantum Chem. 19: 427 (1981).CrossRefGoogle Scholar
  25. 25.
    È.H. Lieb, Rev. Mod. Phys. 53:603 (1981); Errata, 54: 311 (1982).Google Scholar
  26. 26.
    E.H. Lieb, Phys. Rev. Lett.46:457 (1981); Erratum, 47_69 (1981).Google Scholar
  27. 27.
    J.K. Percus, Int. J. Quantum Chem. 13: 89 (1978).CrossRefGoogle Scholar
  28. 28.
    R.A. Adams, Sobolev Spaces (Avademic Press, New York)(1975).Google Scholar
  29. 29.
    W. Fenchel, Can. J. Math. 1: 23 (1949).MathSciNetCrossRefGoogle Scholar
  30. 30.
    W. Kohn and L.J. Sham, Phys. Rev. A140: 1133 (1965).MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    H. Brezis, Analyse Functionelle, Theorie et Applications, Masson, Paris (1983).Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Elliott H. Lieb
    • 1
  1. 1.Departments of Mathematics and PhysicsPrinceton UniversityPrincetonUSA

Personalised recommendations