Advertisement

The Constrained Search Formulation of Density Functional Theory

  • Mel Levy
  • John P. Perdew
Part of the NATO ASI Series book series (volume 123)

Abstract

Consider N interacting electrons in a local spin-independent external potential v. The Hamiltonian is
$$ {\text{H = T + Vee + }}\sum\limits_{i = 1}^N {v(\vec r_i )} ,$$
(1)
where T and Vee are, respectively, the kinetic and electron-electron repulsion operators.

Keywords

Density Functional Theory External Potential Antisymmetric Function Local Density Approxima Finite Dimensional Quantum System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136: B864 (1964).MathSciNetCrossRefGoogle Scholar
  2. 2.
    M. Levy, Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem, Proc. Natl. Acad. Sci. (USA) 76:6062 (1979); M. Levy, Universal functionals of the density and first-order density matrix, Bull. Amer. Phys. So.c. 24: 626 (1979).ADSGoogle Scholar
  3. 3.
    M. Levy, Electron densities in search of hamiltonians, Phys. Rev. A 26: 1200 (1982).CrossRefGoogle Scholar
  4. 4.
    E. H. Lieb, Density functionals for coulomb systems, in “Physics as Natural Philosophy: Essays in Honor of Laszlo Tisza on his 75th Birthday”, H. Feshbach and A. Shimony, eds., M.I.T. Press, Cambridge (1982); E. H. Lieb, Density functionals for coulomb systems, Int. J. Quantum Chem. 24:243 (1983).Google Scholar
  5. 5.
    M. R. Nyden and R. G. Parr, Restatement of conventional electronic wavefunction determination as a density functional procedure, J. Chem. Phys. 78:4044 (1983); M. R. Nyden, An orthogonality constrained generalization of the Weizacker density functional method, J. Chem. Phys. 78: 4048 (1983).ADSGoogle Scholar
  6. 6.
    G. Zumbach and K. Maschke, New approach to the calculation of density functionals, Phys. Rev. A 28: 544 (1983).MathSciNetCrossRefGoogle Scholar
  7. 7.
    J. E. Harriman, Orthonormal orbitals for the representation of an arbitrary density, Phys. Rev. A 24: 680 (1981).CrossRefGoogle Scholar
  8. 8.
    M. Levy, T.-S. Nee, and R. G. Parr, Method for direct determination of localized orbitals, J. Chem. Phys. 63: 316 (1975).ADSCrossRefGoogle Scholar
  9. 9.
    P. A. Christiansen and W. E. Palke, A study of the ethane internal rotation barrier, Chem. Phys. Lett. 31: 462 (1975).ADSCrossRefGoogle Scholar
  10. 10.
    W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140: A1133 (1965).MathSciNetCrossRefGoogle Scholar
  11. 11.
    J. C. Slater, “The Self-Consistent Field for Molecules and Solids”, McGraw-Hill, New York (1974); J. W. D. Connally, The Xa Method, in Modern Theoretical Chemistry 7, G. A. Segal, ed., Plenum, New York (1977).Google Scholar
  12. 12.
    H. Englisch and R. Englisch, Hohenberg-Kohn theorem and non-v-representable densities, Physica 121A: 253 (1983).MathSciNetCrossRefGoogle Scholar
  13. 13.
    M. Levy and J. P. Perdew, Generalized density-functional orbital theories and v-representability, unpublished.Google Scholar
  14. 14.
    J. P. Perdew and A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B 23:5048 (1981). They have also proved that regardless of the v-representability status of a given orbital it must be free of self interaction in the exact theory.Google Scholar
  15. 15.
    M. Levy, J. P. Perdew, and V. Sahni, Exact differential equation for the density of a many-particle system, unpublished.Google Scholar
  16. 16.
    J. Harris, The role of occupation numbers in HKS theory, Int. J. Quantum Chem. S13:189 (1980); J. Harris, The adiabatic-connection approach to Kohn-Sham, unpublished.Google Scholar
  17. 17.
    J. K. Percus, The role of model systems in the few-body reduction of the N-Fermion problem, Int. J. Quantum Chem. 13: 89 (1978).CrossRefGoogle Scholar
  18. 18.
    P. W. Payne, Density functionals in unrestricted Hartree-Fock theory, J. Chem. Phys. 71: 490 (1979).ADSCrossRefGoogle Scholar
  19. 19.
    K. F. Freed and M. Levy, Direct first principles algorithm for the universal electron density functional, J. Chem. Phys. 77: 396 (1982).ADSCrossRefGoogle Scholar
  20. 20.
    This section, equations (35) to (46), was sent to Englisch and Englisch in January, 1983. See the addendum which they kindly include in their article (reference 12). Englisch and Englisch independently assert these equations in reference 12. We thank them for having sent us a copy of their manuscript before publication.Google Scholar
  21. 21.
    E. H. Lieb, excited-state section of his chapter in this book. We thank him for kindly having sent us a copy of his excited-state section before publication.Google Scholar
  22. 22.
    U. von Barth, Density functional theory for solids, NATO ’ Advanced Study Institute, Gent, Summer 1982, Plenum, in press.Google Scholar
  23. 23.
    U. von Barth, Local-density theory of multiplet structure, Phys. Rev. A 20: 1693 (1979).CrossRefGoogle Scholar
  24. 24.
    A. K. Theophilou, The energy density functional formalism for excited states, J. Phys. C 12:5419 (1979); J. Katriel, An alternative interpretation of Theophilou’s extension of the Hohenberg-Kohn theorem to excited states, J. Phys. C 13: L375 (1980).Google Scholar
  25. 25.
    S. M. Valone and J. F. Capitani, Bound excited states in density-functional theory, Phys. Rev. A, 23: 2127 (1981).CrossRefGoogle Scholar
  26. 26.
    O. Gunnarsson and B. I. Lundqvist, Exchange and correlation in atoms, molecules, and solids by the spin-density functional formalism, Phys. Rev. B 13: 4274 (1976).CrossRefGoogle Scholar
  27. 27.
    S. M. Valone, A one-to-one mapping between one-particle densities and some n-particle ensembles, J. Chem. Phys. 73:4653 (1980); S. M. Valone, Consequences of extending 1 matrix energy functions from pure-state representable to all ensemble representable 1 matrices, J. Chem. Phys. 73: 1344 (1980).MathSciNetADSGoogle Scholar
  28. 28.
    W. Kohn, “V-representability and density functional theory”, Phys. Rev. Lett. 51: 1596 (1983).MathSciNetADSCrossRefGoogle Scholar
  29. 29.
    H. Englisch and R. Englisch, V-representability in finite-dimensional space, unpublished. S.e also S. T. Epstein and C. M. Rosenthal, The Hohenberg-Kohn theorem, J. Chem. Phys. 64:247 (1976); J. Katriel, C. J. Appelof, and E. R. Davidson, Mapping between local potentials and ground state densities, Int. J. Quantum Chem. 19: 293 (1981).Google Scholar
  30. 30.
    J. T. Chayes, L. Chayes, and E. H. Lieb, The inverse problem in classical statistical mechanics, unpublished manuscript.Google Scholar
  31. 31.
    D. C. Langreth and J. P. Perdew, The exchange-correlation energy of a metallic surface, Solid State Commun. 17:1425 (1975); Exchange-correlation energy of a metallic surface: wave-vector analysis, Phys. Rev. B 15: 2884 (1977).CrossRefGoogle Scholar
  32. 32.
    C. 0. Almbladh, Technical Report, University of Lund (1972).Google Scholar
  33. 33.
    U. von Barth and L. Hedin, A local exchange-correlation potential for the spin-polarized case I, J. Phys. C 5: 1629 (1972).ADSCrossRefGoogle Scholar
  34. 34.
    A. K. Rajagopal and J. Callaway, Inhomogeneous electron gas, Phys. Rev. B 7:1912 (1973). See also A. K. Rajagopal, Adv. in Chem. Phys. 41:59 (1980).Google Scholar
  35. 35.
    J. F. Capitani, R. F. Nalewajski, and R. G. Parr, Non-BornOppenheimer density functional theory of molecular systems, J. Chem. Phys. 76: 568 (1982).ADSCrossRefGoogle Scholar
  36. 36.
    A. K. Rajagopal, A density functional formalism for condensed matter systems, chapter in this book.Google Scholar
  37. 37.
    L. J. Bartolotti, Time-dependent extension of the HohenbergKohn-Levy energy-density functional, Phys. Rev. A 24: 1661 (1982).MathSciNetCrossRefGoogle Scholar
  38. 38.
    Erich Runge and E.K.U. Gross, Phys. Rev. Lett. 52: 997 (1984).ADSCrossRefGoogle Scholar
  39. 39.
    H. Stoll and A. Savin, Density functionals for correlation energies of atoms and molecules, chapter in this book, and references within.Google Scholar
  40. 40.
    G. A. Henderson, Variational theorems for the single-particle probability density and density-matrix in momentum space, Phys. Rev. A 23: 19 (1981).CrossRefGoogle Scholar
  41. 41.
    R. N. Pathak, P. V. Panat, and S. R. Gadre, Local-density functional model for atoms in momentum space, Phys. Rev. A 26: 3073 (1982).CrossRefGoogle Scholar
  42. 42.
    G. E. W. Bauer, unpublished. See also G. E. W. Bauer, General operator ground-state expectation values in the Hohenberg-Kohn-Sham density-functional formalism, Phys. Rev. B 27: 5912 (1983).Google Scholar
  43. 43.
    J. P. Perdew, R. G. Parr, M. Levy, and J. L. Balduz, Jr., Density-functional theory for fractional particle number: Derivative discontinuities of the energy, Phys. Rev. Lett. 49: 1691 (1982).ADSCrossRefGoogle Scholar
  44. 44.
    R. G. Parr, R. A. Donnelly, M. Levy, and W. E. Palke, Electronegativity: The density functional viewpoint, J. Chem. Phys. 68: 3801 (1978).ADSCrossRefGoogle Scholar
  45. 45.
    R. G Parr and L. J. Bartolotti, Some remarks on the density functional theory of few electron systems, J. Phys. Chem. 87: 2810 (1983).CrossRefGoogle Scholar
  46. 46.
    C.-O. Almbladh and U. von Barth, Exact results for the charge and spin densities, exchange-correlation potentials, and density-functional eigenvalues, unpublished manuscript (1983). See also chapter in this book; C.-0. Almbladh and A. C. Pedroza, unpublished manuscript (1983).Google Scholar
  47. 47.
    J. P. Perdew and M. Levy, Density functional theory for open systems, in “Many-Body Phenomena at Surfaces”, D. C. Langreth and H. Suhl, eds., Academic, in press.Google Scholar
  48. 48.
    J. P. Perdew and M. Levy, Physical content of the exact Kohn-Sham orbital energies: Band gaps and derivative discontinuities, Phys. Rev. Lett. 51: 1884 (1983); L. S. Sham and M. Schluter, Density functional theory of the energy gap, Phys. Rev. Lett. 51: 1888 (1983).ADSGoogle Scholar
  49. 49.
    M. Levy, On long-range behavior and ionization potentials, technical report, University of North Carolina, Chapel Hill (1975).Google Scholar
  50. 50.
    J. P. Perdew, What do the Rohn-Sham orbital energies mean? How do atoms dissociate?, chapter in this book.Google Scholar
  51. 51.
    M. Levy, J. P. Perdew, and V. Sahni, Exact differential equation for the density of a many-particle system, unpublished manuscript (1983). This manuscript contains an extensive discussion and a convincing theorem which states that the Rohn-Sham effective potential tends asymptotically to zero. See also references 14, 22, 43, and 46–50.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Mel Levy
    • 1
  • John P. Perdew
    • 1
  1. 1.Departments of Chemistry and PhysicsTulane UniversityNew OrleansUSA

Personalised recommendations