The Scaling Approach to Nuclear Giant Multipole Resonances

  • Gottfried Holzwarth
Part of the NATO ASI Series book series (volume 123)


In the following lectures we shall discuss an example where straight application of density-functional methods fails to give a useful approximation to the dynamical behaviour of a many-body system. We shall show, however, that a rather simple extension of the functional method allows for a reliable description of many dynamical features of collective motion in Fermi fluids.


Sound Speed Random Phase Approximation Strength Function Quadrupole Excitation Scalar Boundary Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. E. Bertrand (Editor), “Giant Multipole Resonances”, Nuclear Science Research Conference Series, Vol. 1 Harwood Academic Publishers 1980.Google Scholar
  2. J. Speth and A. van der Woude, Rep. Prog. Phys. 44: 719 (1981).ADSCrossRefGoogle Scholar
  3. 2.
    O. Bohigas, X. Campi, H. Krivine and J. Treiner, Phys. Letters 64 B:381(1976).ADSGoogle Scholar
  4. G. Eckart and G. Holzwarth, Z. Phys. A 281: 385 (1977).ADSCrossRefGoogle Scholar
  5. 3.
    M. Beiner, H. Flocard, N. Van Giai and P. Quentin, Nucl. Phys. A 238: 29 (1975).CrossRefGoogle Scholar
  6. H. Krivine, J. Treiner and O. Bohigas, Nucl. Phys. A 336: 155 (1980).CrossRefGoogle Scholar
  7. 4.
    D. A. Kirshnits, “Field theoretical methods in many-body systems”, Pergamon, London 1967.Google Scholar
  8. M. Brack, B. K. Jennings and Y. H. Chu, Phys. Letters 65 B: 1 (1976).ADSGoogle Scholar
  9. H. Krivine and J. Treiner, Phys. Letters 88 B:212(1979).ADSGoogle Scholar
  10. 5.
    A. Bohr and B. R. Mottelson, “Nuclear Structure”, Vol. 2, Ch. 6 A, Benjamin, Reading 1975.Google Scholar
  11. 6.
    H. Sagawa and G. Holzwarth, Prog. Theor. Phys. 59: 1213 (1978).ADSCrossRefGoogle Scholar
  12. 7.
    J. Martorell, O. Bohigas, S. Fallieros and A. M. Lane, Phys. Letters 60 B:313(1976).ADSGoogle Scholar
  13. O. Bohigas, A. M. Lane and J. Martorell, Phys. Rep. 51: 267 (1979).ADSCrossRefGoogle Scholar
  14. 8.
    G. Holzwarth and G. Eckart, Nucl. Phys. A 325: 1 (1979).CrossRefGoogle Scholar
  15. 9.
    S. Stringari, Nucl. Phys. A 279: 454 (1977).Google Scholar
  16. 10.
    G. Eckart and G. Holzwarth, Phys. Letters 118 B:9(1982).ADSGoogle Scholar
  17. 11.
    G. Eckart, G. Holzwarth and J. P. da Providencia, Nucl. Phys. A 364: 1 (1981).ADSCrossRefGoogle Scholar
  18. 12.
    F. E. Serr, Phys. Letters 97 B:180(1980).ADSGoogle Scholar
  19. 13.
    K. And and S. Nishizaki, Prog. Theor. Phys. 68: 1196 (1982).ADSCrossRefGoogle Scholar
  20. 14.
    T. Yukawa and G. Holzwarth, Nucl. Phys. A 364: 29 (1981).CrossRefGoogle Scholar
  21. 15.
    G. Holzwarth and H. Thorn, Siegen University 1983, to be publ.Google Scholar
  22. 16.
    K. And and G. Eckart, Siegen University 1983, to be publ.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Gottfried Holzwarth
    • 1
  1. 1.Universität Siegen, FB 759 Siegen 21West Germany

Personalised recommendations