What do the Kohn-Sham Orbital Energies Mean? How do Atoms Dissociate?

  • John P. Perdew
Part of the NATO ASI Series book series (volume 123)


Hohenberg and Kohn1 have demonstrated the existence of a functional Ey [n] which, when minimized over trial densities \( n(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}\to {r} )\) integrating Yo N electrons, yields the exact ground-state energy E and density for N electrons subject to an external potential \( v(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}\to {r} )\).


Electron Number Orbital Energy Derivative Discontinuity Local Density Approximation Bital Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. 136: B864 (1964).MathSciNetCrossRefGoogle Scholar
  2. 2.
    W. Kohn and L.J. Sham, Self-Consistent Equations Including Exchange and Correlation, Phys. Rev. 140: A1133 (1965).MathSciNetCrossRefGoogle Scholar
  3. 3.
    J.C. Slater, “The Self-Consistent Field for Molecules and Solids”, McGraw-Hill, N.Y. (1974).Google Scholar
  4. 4.
    N.D. Lang, Density Functional Approach to the Electronic Structure of Metal Surfaces and Metal-Adsorbate Systems, in “Theory of the Inhomogeneous Electron Gas”, S. Lundqvist and N.H. March, eds., Plenum, N.Y. (1983); see also this volume.Google Scholar
  5. 5.
    J.P. Perdew, D.C. Langreth and V. Sahni, Corrections to the Local Density Approximation: Gradient Expansion vs. Wave- Vector Analysis for the Metallic Surface Problem, Phys. Rev. Lett. 38: 1030 (1977).ADSCrossRefGoogle Scholar
  6. 6.
    D.D. Koelling, The Band Model for d-and f- Metals, lecture notes for the Gent Summer School 1982, Plenum.Google Scholar
  7. 7.
    J.P. Perdew and A. Zunger, Self-interaction Correction to Density-Functional Approximations for Many-Electron Systems, Phys. Rev. B23: 5048 (1981).CrossRefGoogle Scholar
  8. 8.
    C.S. Wang and W.E. Pickett, Density Functional Theory of Excitation Spectra of Semiconductors and Application to Silicon, Phys. Rev. Lett. 51: 597 (1983).ADSCrossRefGoogle Scholar
  9. 9.
    L.J. Sham and W. Kohn, One-Particle Properties of an Inhomogeneous Interacting Electron Gas, Phys. Rev. 145: 561 (1966).CrossRefGoogle Scholar
  10. 10.
    J.F. Janak, Proof that aEan. E. in Density-Functional Theory, Phys. Rev. B18: 7165(1971).Google Scholar
  11. 11.
    M. Levy, Universal Variational Functionals of Electron Densities, First-Order Density Matrices, and Natural Spin Orbitals and Solution of the v-Representability Problem, Proc. Nat. Acad. Sci. USA 76: 6062 (1979); see also this volume.Google Scholar
  12. 12.
    M. Levy, Electron Densities in Search of Hamiltonians, Phys. Rev. A 26: 1200 (1982).CrossRefGoogle Scholar
  13. 13.
    E.H. Lieb, Density Functionals for Coulomb Systems, Int. J. Quantum Chem. 24: 243 (1983); see also this volume.CrossRefGoogle Scholar
  14. 14.
    W. Kohn, v-Representability and Density Functional Theory, Phys. Rev. Lett. 51: 1596 (1983); see also this volume.MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    N.D. Mermin, Thermal Properties of the Inhomogeneous Electron Gas, Phys. Rev. 137: A1441 (1965).MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    J.P. Perdew, R.G. Parr, M. Levy and J.L. Balduz, Density Functional Theory for Fractional Particle Number: Derivative Discontinuities of the Energy, Phys. Rev. Lett. 49: 1691 (1982). As L.J. Sham has pointed out, the first half of the last sentence of the abstract should be qualified with the phrase “for open-shell systems.”Google Scholar
  17. 17.
    J.P. Perdew and M. Levy, Density Functional Theory for Open Systems, in “Many-Body Phenomena at Surfaces”, D.C. Langreth and H. Suhl, eds., Academic.Google Scholar
  18. 18.
    R.G. Parr and L.J. Bartolotti, Some Remarks on the Density Functional Theory of Few Electron Systems, J. Phys. Chem. 87: 2810 (1983).CrossRefGoogle Scholar
  19. 19.
    J.P. Perdew and M. Levy, Physical Content of the Exact Kohn-Sham Orbital Energies: Band Gaps and Derivative Discontinuities, Phys. Rev. Lett. 51: 1884 (1983)ADSCrossRefGoogle Scholar
  20. 20.
    L.J. Sham and M. Schluter, Density Functional Theory of the Energy Gap, Phys. Rev. Lett. 51: 1888 (1983)ADSCrossRefGoogle Scholar
  21. 21.
    U. von Barth, Density Functional Theory for Solids, lecture notes for the Gent Summer School 1982, Plenum; see also this volume.Google Scholar
  22. 22.
    J.P. Perdew and J.R. Smith, Can Desorption be Described by the Local Density Formalism?, unpublished manuscript (1983).Google Scholar
  23. 23.
    J. Eichler and T.S. Ho, Collective Effects in Atomic Collisions I. Constrained Hartree-Fock Approach for Diatomic Systems, Z. Phys. A 311: 19 (1983).ADSGoogle Scholar
  24. 24.
    R.G. Parr, R.A. Donnelly, M. Levy and W.E. Palke, Electronegativity: The Density Functional Viewpoint, J. Chem. Phys. 68: 3801 (1978).ADSCrossRefGoogle Scholar
  25. 25.
    E.P. Gyftopoulos and G.N. Hatsopoulos, Quantum-Thermodynamic Definition of Electronegativity, Proc. Nat. Acad. Sci. USA 60: 786 (1968).ADSCrossRefGoogle Scholar
  26. 26.
    R.G. Parr and R.G. Pearson, Absolute Hardness: Companion Parameter to Absolute Electronegativity, J.A.C.S. (to appear 1983); see also this volume.Google Scholar
  27. 27.
    S.M. Valone, A One-to-One Mapping between 1-Particle Densities and Some N-Particle Ensembles, J. Chem. Phys. 73: 4653 (1980).MathSciNetADSGoogle Scholar
  28. 28.
    U. von Barth and L. Hedin, A Local Exchange-Correlation Potential for the Spin-Polarized Case, J. Phys. C 5: 1629 (1972).ADSCrossRefGoogle Scholar
  29. 29.
    A.K. Rajagopal and J. Callaway, Inhomogeneous Electron Gas, Phys. Rev. B 7: 1912 (1973).CrossRefGoogle Scholar
  30. 30.
    J. Harris and R.O. Jones, The Surface Energy of a Bounded Electron Gas, J. Phys. F 4: 1170 (1974).ADSCrossRefGoogle Scholar
  31. 31.
    D.C. Langreth and J.P. Perdew, The Exchange-Correlation Energy of a Metallic Surface, Solid State Commun. 17: 1425 (1975); Exchange-Correlation Energy of a Metallic Surface: Wave-Vector Analysis, Phys. Rev. B 15: 2884 (1977).CrossRefGoogle Scholar
  32. 32.
    O. Gunnarsson and B.I. Lundqvist, Exchange and Correlation in Atoms, Molecules and Solids by the Spin-Density Functional Formalism, Phys. Rev. B 13: 4274 (1976).CrossRefGoogle Scholar
  33. 33.
    M.M. Morrell, R.G. Parr and M. Levy, Calculation of Tonization Potentials from Density Matrices and Natural Functions, and the Long-Range Behavior of Natural Orbitals and Electron Density, J. Chem. Phys. 62: 549 (1975).ADSCrossRefGoogle Scholar
  34. 34.
    M. Levy, On Long-Range Behavior and Ionization Potentials, technical report, U. of North Carolina (1975).Google Scholar
  35. 35.
    D.W. Smith, S. Jagannathan and G.S. Handler, Density Functional Theory of Atomic Structure. I. Exchange and Correlation Potentials for Two-Electron Atoms, Int. J. Quantum Chem. S13: 103 (1979).Google Scholar
  36. 36.
    J. Katriel and E.R. Davidson, Asymptotic Behavior of Atomic and Molecular Wave Functions, Proc. Nat. Acad. Sci. USA 77: 4403 (1980).ADSCrossRefGoogle Scholar
  37. 37.
    C.-O. Almbladh and U. von Barth, Exact Results for the Charge and Spin Densities, Exchange-Correlation Potentials, and Density-Functional Eigenvalues, unpublished manuscript (1983).Google Scholar
  38. 38.
    M. Levy, J.P. Perdew and V. Sahni, Exact Differential Equation for the Density of a Many-Particle System, unpublished manuscript (1983).Google Scholar
  39. 39.
    C.-O. Almbladh and A.C. Pedroza, Density-Functional Exchange-Correlation Potentials and Orbital Eigenvalues for Light Atoms, unpublished manuscript (1983).Google Scholar
  40. 40.
    U. Gupta and A.K. Rajagopal, Exchange-Correlation Potential for Inhomogeneous Electron Systems at Finite Temperatures, Phys. Rev. A 22: 2792 (1980);ADSCrossRefGoogle Scholar
  41. 41.
    A.R. Williams and U. von Barth, Applications of Density Functional Theory to Atoms, Molecules and Solids, in “Theory of the Inhomogeneous Electron Gas”, S. Lundqvist and N.H. March, eds., Plenum, N.Y. (1983).Google Scholar
  42. 42.
    D.C. Langreth and M.J. Mehl, Beyond the Local Density Approximation in Calculations of Ground-State Electronic Properties, Phys. Rev. B 28: 1809 (1983).CrossRefGoogle Scholar
  43. 43.
    D.C. Langreth and J.P. Perdew, Theory of Nonuniform Electronic Systems. I. Analysis of the Gradient Approximation and a Generalization that Works, Phys. Rev. B 21: 5469 (1980).Google Scholar
  44. 44.
    J.P. Perdew, Self-Interaction Correction, in “Local Densities in Quantum Chemistry and Solid State Physics”, J. Avery and J.P. Dahl, eds., Academic.Google Scholar
  45. 45.
    H. Stoll and A. Savin, Density Functionals for Correlation Energies of Atoms and Molecules, this volume.Google Scholar
  46. 46.
    J.D. Talman and W.F. Shadwick, Optimized Effective Atomic Central Potential, Phys. Rev. A 14: 36 (1976).CrossRefGoogle Scholar
  47. 47.
    V. Sahni, J. Gruenebaum and J.P. Perdew, Study of the Density-Gradient Expansion for the Exchange Energy, Phys. Rev. B 26: 4371 (1982).CrossRefGoogle Scholar
  48. 48.
    J.P. Perdew and M.R. Norman, Electron Removal Energies in Kohn-Sham Density-Functional Theory, Phys. Rev. B 26: 5445 (1982).CrossRefGoogle Scholar
  49. 49.
    M.R. Norman and D.D. Koelling, A Kohn-Sham Functional for Atoms, unpublished manuscript (1983).Google Scholar
  50. 50.
    H.F. King and R.E. Stanton, Multiple Solutions to the HartreeFock Problem. II. Molecular Wavefunctions in the Limit of Infinite Internuclear Separation, J. Chem. Phys. 50: 3789 (1969).ADSCrossRefGoogle Scholar
  51. 51.
    L.A. Cole and J.P. Perdew, Calculated Electron Affinities of the Elements, Phys. Rev. A 25: 1265 (1982).CrossRefGoogle Scholar
  52. 52.
    C.E. Moore, Ionization Potentials and Ionization Limits Derived from the Analyses of Optical Spectra, Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. (U.S.) 34: 1 (1970).ADSGoogle Scholar
  53. 53.
    H. Hotop and W.C. Lineberger, Binding Energies in Atomic Negative Ions, J. Phys. Chem. Ref. Data 4: 539 (1975).ADSCrossRefGoogle Scholar
  54. 54.
    K.D. Sevier, Atomic Electron Binding Energies, At. Data Nucl. Data Tables 24: 323 (1979).CrossRefGoogle Scholar
  55. 55.
    K. Nuroh, M.J. Stott and E. Zaremba, Calculation oç1the 4d Subshell Photoabsorption Spectra of Ba, Ba and Ba, Phys. Rev. Lett. 49: 862 (1982).ADSCrossRefGoogle Scholar
  56. 56.
    L. Hedin and S. Lundqvist, Effects of Electron-Electron and Electron-Phonon Interactions on the One-Electron States of Solids, Solid State Physics 23: 1 (1969).CrossRefGoogle Scholar
  57. 57.
    M. Rasolt and S.H. Vosko, Investigations of Nonlocal Exchange and Correlation Effects in Metals via the Density-Functional Formalism, Phys. Rev. B 10: 4195 (1974).CrossRefGoogle Scholar
  58. 58.
    A.H. MacDonald, M.W.C. Dharma-wardana and D.J.W. Geldart, Density Functional Approximation for the Quasiparticle Properties of Simple Metals: I. Theory and Electron Gas Calculations, J. Phys. F 10: 1719 (1980).ADSCrossRefGoogle Scholar
  59. 59.
    G. Strinati, H.J. Mattausch and W. Hanke, Dynamical Aspects of Correlation Corrections, Phys. Rev. B 25: 2867 (1982).CrossRefGoogle Scholar
  60. 60.
    F. Sacchetti, Electron-Electron Interaction and Single-Particle Properties in Copper, J. Phys. F 12: 281 (1982).ADSCrossRefGoogle Scholar
  61. 61.
    M.R. Norman and J.P. Perdew, Simplified Self-Interaction Correction Applied to the Energy Bands of Neon and Sodium Chloride, Phys. Rev. B 28: 2135 (1983).CrossRefGoogle Scholar
  62. 62.
    O. Gunnarsson, B.I. Lundqvist and J.W. Wilkins, Contribution to the Cohesive Energy of Simple Metals: Spin-Dependent Effect, Phys. Rev. B 10: 1319 (1974).CrossRefGoogle Scholar
  63. 63.
    A. Zunger and A.J. Freeman, Ground-and Excited-State Properties of Li F in the Local-Density Approximation, Phys. Rev. B 16: 2901 (1977).CrossRefGoogle Scholar
  64. 64.
    N.D. Lang and A.R. Williams, Core Holes in Chemisorbed Atoms, Phys. Rev. B 16: 2408 (1977).CrossRefGoogle Scholar
  65. 65.
    J. Harris and R.O. Jones, Density Functional Theory of 3d-Transition Element Atoms, J. Chem. Phys. 68: 3316 (1978).ADSCrossRefGoogle Scholar
  66. 66.
    O. Gunnarsson and R.O. Jones, Density Functional Calculations for Atoms, Molecules and Clusters, Phys. Scripta 21: 394 (1980).ADSCrossRefGoogle Scholar
  67. 67.
    L. Wilk and S.H. Vosko, Estimates of Non-Local Corrections to Total, Ionization, and Single-Particle Energies, J. Phys. C 15: 2139 (1982).ADSCrossRefGoogle Scholar
  68. 68.
    J.G. Harrison, Density Functional Calculations for Atoms in the First Transition Series, J. Chem. Phys. 78: 4562 (1983).ADSCrossRefGoogle Scholar
  69. 69.
    N.F. Mott, “Metal-Insulator Transitions”, Barnes and Noble, N.Y. (1974).Google Scholar
  70. 70.
    B.H. Brandow, Electronic Structure of Mott Insulators, Adv. in Phys. 26: 651 (1977).ADSCrossRefGoogle Scholar
  71. 71.
    L.M. Sander, H.B. Shore and J.H. Rose, Self-Consistent Band Structure Theory of the Metal-Insulator Transition, Phys. Rev. B 24: 4879 (1981).CrossRefGoogle Scholar
  72. 72.
    A. Zunger, One-Electron Broken-Symmetry Approach to the Core-Hole Spectra of Semiconductors, Phys. Rev. Lett. 50: 1215 (1983).ADSCrossRefGoogle Scholar
  73. 73.
    D.M. Bylander and L. Kleinman, Broken Symmetry in the Local Spin Density Approximation and its Application to Relativistic Atoms, Phys. Rev. Lett. 51: 889 (1983).ADSCrossRefGoogle Scholar
  74. 74.
    S.B. Trickey, A.K. Ray and J.P. Worth, Adequacy of Local-Exchange Excitation Hamiltonians in Insulators, Phys. Stat. Sol. (b) 106: 613 (1981).ADSCrossRefGoogle Scholar
  75. 75.
    A.E. Carlsson and J.W. Wilkins, Band-Overlap Metallization of Ba S, Ba Se and Ba Te, unpublished manuscript (1983).Google Scholar
  76. 76.
    R.A. Heaton, J.G. Harrison and C.C. Lin, Self-Interaction Correction for Density-Functional Theory of Electronic Energy Bands of Solids, Phys. Rev. B 28: 5992 (1983)ADSGoogle Scholar
  77. 77.
    U. von Barth and R. Car, unpublished calculation referred to in Ref. 21.Google Scholar
  78. 78.
    W. Hanke, Exchange-Correlation Potential for One-Electron Excitations in a Semiconductor, unpublished manuscript (1983).Google Scholar
  79. 79.
    J.R. Smith, ed., “Theory of Chemisorption”, Springer-Verlag, Berlin (1980).Google Scholar
  80. 80.
    N.D. Lang and A.R. Williams, Theory of Atomic Chemisorption on Simple Metals, Phys. Rev. B 18: 616 (1978).CrossRefGoogle Scholar
  81. 81.
    M. Levy and J.P. Perdew, The Exact Exchange-Correlation Potential at Infinite Atomic Separation, Bull. Am. Phys. Soc. 28: 266 (1983).Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • John P. Perdew
    • 1
  1. 1.Department of Physics and Quantum Theory GroupTulane UniversityNew OrleansUSA

Personalised recommendations