Skip to main content

Visual and Somatosensory Processes

  • Chapter
The Hamster

Abstract

The hamster is an animal not specialized for vision that curiously has captured the attention of numerous specialists in vision. Although the initial choice of the hamster for Schneider’s (1969) germinal paper was guided principally by the experimental convenience of the hamster’s insatiable appetite for sunflower seeds and the ease of the neurosurgical approach to the midbrain, unforeseen advantages have emerged in studying hamsters. The analysis of hamster vision has forced a clearer understanding of the different reasons why comparative analyses of visual systems are useful. A researcher might choose to investigate hamster vision because the goal is to understand human vision. Since the hamster visual system is less elaborate than ours, one might hope to see the fundamental organization of mammalian vision somehow laid bare in the hamster. This is decidedly the context in which most work in rodent (principally rat) vision has been done to date. Alternatively, a researcher might be interested in the general design of sensory systems and in how the visual system is evolutionarily modified to fit the requirements of particular niches. By chance, it has turned out that the hamster is markedly less trainable than the rat, former principal representative of the “simple” mammalian visual system. The rat can usually be induced to perform simple versions of primate puzzles, whereas visuomotor tasks asked of the hamster must reflect its natural behavior more directly, and have included such things as recognition of seeds, crickets and other hamsters, and the ability to find holes and avoid barriers and threats. The resulting compilation of the natural visual capacities of a granivorous, predated-upon mammal primarily active at twilight makes a new sort of comparison possible to those of other well-studied vertebrates in different visual niches, such as frogs, monkeys, and cats. Basic design features of the vertebrate visual system versus niche specific adaptations are contrasted by these two approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrahams, V. C., and Rose, P. K., 1977, Projection of extra-ocular, neck muscle, and retinal afferents to superior colliculus in the cat: their connections to cells of origin of tectospinal tract, J. Neurophysiol. 38: 10–18.

    Google Scholar 

  • Anderson, M. E., Yoshida, M., and Wilson, V. J., 1971, Influences of cat superior colliculus on cat neck motoneurons, J. Neurophysiol. 34: 898–907.

    PubMed  CAS  Google Scholar 

  • Bastiani, J., 1981, Visual and electrosensory responses in the optic tectum of a weakly electric fish, Soc. Neurosci. Abstr. 7: 845.

    Google Scholar 

  • Beckstead, R. M., 1979, An autoradiographic examination of corticocortical and subcortical projections of the mediodorsal-projection (prefrontal) cortex in the rat, J. Comp. Neurol. 184: 43–62.

    Article  PubMed  CAS  Google Scholar 

  • Bruckner, R., 1951, Spaltlampenmikroscopie und Ophthalmoskopie am Auge von Ratte und Maus, Doc. Ophthalmol. 5–6: 452–554.

    Article  Google Scholar 

  • Bunt, A. H., Hendrickson, A. E., Lund, J. S., Lund, R. D., and Fuchs, A. F., 1975, Monkey retinal ganglion cells: morphometric analysis and tracing of axonal projections with a consideration of the peroxidase technique, J. Comp. Neurol. 164: 265–286.

    CAS  Google Scholar 

  • Chalupa, L. M., 1981, Some observations on the functional organization of the golden hamster’s visual system, Behay. Brain Res. 3: 198–200.

    Google Scholar 

  • Chalupa, L. M., and Henderson, Z., 1980, Monocular enucleation in adult hamsters induces functional changes in the remaining ipsilateral retinotectal projection, Brain Res. 192: 249–254.

    Article  PubMed  CAS  Google Scholar 

  • Chalupa, L. M., and Rhoades, R. W., 1977, Responses of visual, somatosensory, and auditory neurones in the golden hamster’s superior colliculus, J. Physiol. (London) 270: 595–626.

    Article  CAS  Google Scholar 

  • Chalupa, L. M., and Rhoades, R. W., 1978, Directional selectivity in hamster’s superior colliculus is modified by strobe-rearing but not by dark-rearing, Science 199: 998–1001.

    Article  PubMed  CAS  Google Scholar 

  • Chalupa, L. M., and Rhaodes, R. W., 1979, An autoradiographic study of the retinotectal projection in the golden hamster, J. Comp. Neurol. 186: 561–570.

    Article  PubMed  CAS  Google Scholar 

  • Chalupa, L. M., and Thompson, I., 1980, Retinal ganglion cell projections to the superior colliculus of the hamster demonstrated by the horseradish peroxidase technique, Neurosci. Lett. 19: 13–19.

    Article  PubMed  CAS  Google Scholar 

  • Chalupa, L. M., Morrow, A., and Rhoades, R. W., 1978, Behavioral consequences of visual deprivation and restriction in the golden hamster, Exp. Neurol. 61: 442–454.

    Article  PubMed  CAS  Google Scholar 

  • Chow, K. L., Masland, R. H., and Stewart, D. L., 1971, Receptive field characteristics of striate cortical neurons in the rabbit, Brain Res. 33: 337–352.

    Article  PubMed  CAS  Google Scholar 

  • Cowey, A., and Perry, V. H., 1979, The projection of the temporal retina in rats, studied by retrograde transport of horseradish peroxidase, Exp. Brain Res. 35: 457–464.

    PubMed  CAS  Google Scholar 

  • Crain, B. J., and Hall, C. W., 1980, The organization of the lateral posterior nucleus of the golden hamster, J. Comp. Neural. 193: 351–370.

    Article  CAS  Google Scholar 

  • Crain, B. J., and Hall, W. C., 1981, The normal organization of the lateral posterior nucleus in the golden hamster and its reorganization after neonatal superior colliculus lesions, Behay. Brain Res, 3: 223–228.

    Article  CAS  Google Scholar 

  • Cynader, M., and Berman, N., 1972, Receptive-field organization of monkey superior colliculus, J. Neurophysiol. 35: 187–201.

    PubMed  CAS  Google Scholar 

  • Drager, U. C., 1974, Autoradiography of tritiated proline and fucose transported transneuronally from the eye to the visual cortex in pigmented and albino mice, Brain Res. 82: 284–292.

    Article  PubMed  CAS  Google Scholar 

  • Drager, U. C., 1975, Receptive fields of single cells and topography in mouse visual cortex, J. Comp. Neurol. 160: 269–290.

    Article  PubMed  CAS  Google Scholar 

  • Drager, U. C., and Hubel, D., 1975, Responses to visual stimulation and relationship between visual auditory, and somatosensory inputs in mouse superior colliculus, J. Neurophysiol. 38: 690–713.

    PubMed  CAS  Google Scholar 

  • Drager, U. C., and Hubel, D. H., 1976, Topography of visual and somatosensory projections to mouse superior colliculus, J. Neurophysiol. 39: 91–101.

    PubMed  CAS  Google Scholar 

  • Drager, U. C., and Olsen, J. F., 1980, Origins of crossed and uncrossed retinal projections in pigmented and albino mice, J. Camp. Neurol. 191: 383–412.

    Article  CAS  Google Scholar 

  • Dursteler, M. R., Blakemore, C., and Garey, L. J., 1979, Projections to the visual cortex in the golden hamster, J. Comp. Neurol. 183: 185–204.

    Article  PubMed  CAS  Google Scholar 

  • Ebbeson, S. O. E., 1970, On the organization of central vision pathways in vertebrates, Brain Behay. Evol. 3: 178–194.

    Article  Google Scholar 

  • Ebbeson, S. O. E., 1980, The parcellation theory and its relation to interspecific variability in brain organization, evolutionary and ontogenic development, and neuronal plasticity, Cell Tissue Res. 213: 179.

    Google Scholar 

  • Eichler, V. B., and Moore, R. Y., 1974, The primary and accessory optic systems in the golden hamster, Merocricetus auratus. Arta Anat. 89: 359–371.

    Article  CAS  Google Scholar 

  • Emerson, V. F., 1980, Grating acuity of the golden hamster: Effects of stimulus orientation and luminance, Exp. Brain Res. 38: 43–52.

    CAS  Google Scholar 

  • Emerson, V. F., Chalupa, L. M., Thompson, I. D., and Talbot, R. J., 1982, Behavioral, physiological and anatomical consequences of monocular deprivation in the golden hamster (Mesocricetus auratus), Exp. Brain Res. 45: 168–178.

    Article  PubMed  CAS  Google Scholar 

  • Feldon, S., Feldon, P., and Kruger, L., 1970, Topography of the retinal projection upon the superior colliculus of the cat, Vision Res. 10: 135–143.

    Article  PubMed  CAS  Google Scholar 

  • Finlay, B. L., and Sengelaub, D. R., 1981, Toward a neuroethology of mammalian vision: Ecology and anatomy of rodent visuomotor behavior, Behay. Brain Res. 3: 133–149.

    Article  CAS  Google Scholar 

  • Finlay, B. L., and Slattery, M., 1984, Local differences in the amount of early cell death in neocortex predict adult local specializations, Science 219: 1349–1351.

    Article  Google Scholar 

  • Finlay, B. L., Schneps, S. E., Wilson, K. G., and Schneider, G. E., 1978, Topography of visual and somatosensory projections to the superior colliculus of the golden hamster, Brain Res. 142: 223–235.

    Article  PubMed  CAS  Google Scholar 

  • Finlay, B. L., Marder, K., and Cordon, D., 1980a, Acquisition of visuomotor behavior after neonatal rectal lesions in hamster: The role of visual experience, J. Comp. Physiol. Psychol. 94: 506–518.

    Article  PubMed  CAS  Google Scholar 

  • Finlay, B. L., Sengelaub, D. R., Berg, A. T., and Cairns, S. J., 19801), A neuroethological approach to hamster vision, Behar. Brain Res. 1: 479–496.

    Google Scholar 

  • Frost, D. O., and Schneider, G. E., 1976, Normal and abnormal uncrossed retinal projections in Syrian hamsters as demonstrated by Fink-Heimer and autoradiographic techniques, Neurosci. Abstr. 2: 812.

    Google Scholar 

  • Frost, D. O., So, K.-F., and Schneider, G. E., 1979, Postnatal development of retinal projections in Syrian hamsters: A study using autoradiographic and anterograde degeneration techniques, Neuroscience 4: 1649–1677.

    Article  PubMed  CAS  Google Scholar 

  • Fukada, Y., 1977, A three group classification of rat retinal ganglion cells: histological and physiological studies, Brain Res. 119: 327–311.

    Article  Google Scholar 

  • Fukada, Y., and Stone, J., Retinal distribution and central projections of y-, x-, and w-cells of the cat’s retina, J. Neurophjsisl. 37:719–772.

    Google Scholar 

  • Garey, L. J., and Powell, T. P. S., 1967, The projection of the lateral geniculate nucleus upon the cortex in the cat, Proc. R. Soc. (London) See. B169: 107–126.

    Article  Google Scholar 

  • Goodale, M. A., and Munson, R. C. C., 1975, The effects of lesions of the superior colliculus on locomotor orientation and the orienting reflex in the rat, Brain Res. 88: 213–261.

    Article  Google Scholar 

  • Graham, J., 1977, An autoradiographic study of the efferent connections of the superior colliculus in the cat, J. Comp. Nearsl. 173: 629–654.

    Article  CAS  Google Scholar 

  • Harting, J. K., 1977, Descending pathways from the superior colliculus: An autoradiographic analysis in the rhesus monkey (Macaca mulatta), J. Comp. Neural. 173: 583–612.

    Article  CAS  Google Scholar 

  • Harting, J. K., Hall, W. C., Diamond, I. T., and Martin, G. F., 1973, Antero grade degeneration study of the superior colliculus in Tupaia glis: Evidence for a subdivision between superficial and deep layers, J. Comp. Neurol. 148: 361–386.

    Article  PubMed  CAS  Google Scholar 

  • Haseltine, E., Kaas, L., and Hartline, P. H., 1977, Infrared and visual organization of the tectum of bold snakes, Soc. Neurose:. Abstr. 3: 90.

    Google Scholar 

  • Hubel, D. H., and Wiesel, T. N., 1962, Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex, J. Physiol. 160: 167–287.

    Google Scholar 

  • Hubel, D. H., and Wiesel, T. N., 1968, Receptive fields and functional architecture of monkey striate cortex, J. Physiol. 195: 215–243.

    PubMed  CAS  Google Scholar 

  • Hughes, H. C., 1977, Anatomical and neurobehavioral investigations concerning the thalamocortical organization of the rat’s visual system, J. Comp. Neural. 175: 311–336.

    Article  CAS  Google Scholar 

  • Ingle, D., and Sprague, J., 1975, Sensorimotor function of the midbrain tectum, Neurosci. Res. Prag. Bull. 13: 167–287.

    Google Scholar 

  • Jhaveri, S. R., and Schneider, G. E., 1974, Retinal projections in Syrian hamsters: Normal topography and alterations after partial tectum lesions at birth, Anat. Rec. 178: 383.

    Google Scholar 

  • Keselica, J. J., and Rosinski, R. R., 1976, Spatial perception in colliculectomized and normal golden hamsters, Physiol. Psychol. 4: 511–514.

    Google Scholar 

  • Knudsen, E. I., 1982, Auditory and visual maps of space in the optic tectum of the owl, J. Neurosci. 2: 1177–1194.

    PubMed  CAS  Google Scholar 

  • Lee, K. J., and Woolsey, T. A., 1975, A proportional relationship between peripheral innervation density and cortical neuron number in the somatosensory system of the mouse, Brain Res. 99: 349–353.

    Article  PubMed  CAS  Google Scholar 

  • Lent, R., 1982, The organization of subcortical projections of the hamster’s visual cortex, J. Camp. Neural. 206: 227–242.

    Article  CAS  Google Scholar 

  • Masland, R. H., Chow, K. L., and Stewart, D. L., 1971, Receptive-field characteristics of superior colliculus neurons in the rabbit, J. Neurophysia. 34: 148–156.

    CAS  Google Scholar 

  • Merker, B. H., 1980, The sentinel hypothesis; A role for the mammalian superior colliculus, Ph.D. Dissertation, Massachusetts Institute of Technology.

    Google Scholar 

  • Mitchener, J. C., Pinto, L. H., and Vanable, J. W., Jr., 1976, Visually evoked eye movements in the mouse (Mus musculus), Vision Res. 16: 1169–1171.

    Article  Google Scholar 

  • Mort, E., Cairns, S., Hersch, H., and Finlay, B., 1980, The role of the superior colliculus in visually guided locomotion and visual orienting in the hamster, Physiol. Psychol. 8: 20–28.

    Google Scholar 

  • Niimi, K., Kanaseki, T., and Takimoto, T., 1963, The comparative anatomy of the ventral nucleus of the lateral geniculate body in mammals, J. Camp. Neural. 121: 313–323.

    Article  CAS  Google Scholar 

  • Oyster, C. W., Takahashi, E. S., and Hurst, D. C., 1981, Density, soma size and regional distribution of rabbit retinal ganglion cells, J. Neurosci. 12: 1331–1346.

    Google Scholar 

  • Palmer, D. S., 1980, Orienting elicited by superior colliculus stimulation in the hamster, Master’s Thesis, Cornell University, New York.

    Google Scholar 

  • Pickard, G. E., and Silverman, A. J., 1981, Direct retinal projections to the hypothalamus, priform cortex, and accessory optic nuclei in the golden hamster as demonstrated by a sensitive anterograde horseradish peroxidase technique, J. Comp. Neurol. 196: 155–172.

    Article  PubMed  CAS  Google Scholar 

  • Printz, R. H., and Hall, J. L., 1974, Evidence for a retinohypothalamic pathway in the golden hamster, Anat. Rec. 179: 57–66.

    Article  PubMed  CAS  Google Scholar 

  • Rhoades, R. W., 1980, Response suppression induced by afferent stimulation in the superficial and deep layers of the hamster’s superior colliculus, Exp. Brain Res. 40: 185–195.

    Article  PubMed  CAS  Google Scholar 

  • Rhoades, R. W., 198 la, Cortical and spinal somatosensory input to the superior colliculus in the golden hamster: An anatomical and electrophysiological study, J. Comp. Neurol. 195: 415–432.

    Google Scholar 

  • Rhoades, R. W., 198 lb, Organization of somatosensory input to the deep collicular laminae in hamster, Behay. Brain Res. 3: 201–222.

    Google Scholar 

  • Rhoades, R. W., and Chalupa, L. M., 1976, Directional selectivity in the superior colliculus of the golden hamster, Brain Res. 118: 334–338.

    Article  PubMed  CAS  Google Scholar 

  • Rhoades, R. W., and Chalupa, L. M., 1978a, Conduction velocity distribution of the retinocollicular pathway in the golden hamster, Brain Res. 159: 396–401.

    Article  PubMed  CAS  Google Scholar 

  • Rhoades, R. W., and Chalupa, L. M., 19786, Functional and anatomical consequences of neonatal visual cortical damage in the superior colliculus of the golden hamster, J. Neurophysiol. 41: 1466–1494.

    Google Scholar 

  • Rhoades, R. W., and Chalupa, L. M., 1979, Conduction velocity distribution of retinal input to the hamster’s superior colliculus and a correlation with receptive field characteristics, J. Comp. Neurol. 184: 243–264.

    Article  PubMed  CAS  Google Scholar 

  • Rhoades, R. W., and DellaCroce, D. D., 1980a, Visual callosal connections in the golden hamster, Brain Res. 190: 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Rhoades, R. W., and DellaCroce, D. D., 19806, The cells of origin of the tectospinal tract in the golden hamster: An anatomical and electrophysiological investigation, Exp. Neurol. 67: 163–180.

    Google Scholar 

  • Robertson, R. T., Kaitz, S. S., and Robards, M. J., 1980, A subcortical pathway links sensory and limbic systems of the forebrain, Neurosci. Lett. 17: 161–165.

    Article  PubMed  CAS  Google Scholar 

  • Rodieck, R. W., 1979, Visual pathways, Annu. Rev. Neurosci. 2: 193–225.

    Article  CAS  Google Scholar 

  • Rose, J. D., 1982, Midbrain distribution of neurons with strong, sustained responses to lordosis trigger stimuli in the female golden hamster, Brain Res. 240: 364–367.

    Article  PubMed  CAS  Google Scholar 

  • Rosenquist, A. C., Edwards, S. B., and Palmer, L. A., 1974, An autoradiographic study of the projections of the dorsal lateral ggniculate nucleus and the posterior nucleus in the cat, Brain Res. 80 71–93.

    Article  PubMed  CAS  Google Scholar 

  • Rusak, B., 1977, The role of the suprachiasmatic nuclei in the generation of circadian rhythms in the golden hamster, Mesocricetus auratus, J. Comp. Physiol. 118: 145–164.

    Article  Google Scholar 

  • Scalia, F., 1972, The termination of retinal axons in the pretectal region of mammals, J. Comp. Neurol. 145: 223–258.

    Article  PubMed  CAS  Google Scholar 

  • Schiffman, H. R., 1970, Evidence for sensory dominance: Reactions to apparent depth in rabbits, cats and rodents, J. Comp. Physiol. Psychol. 71: 38–41.

    Article  PubMed  CAS  Google Scholar 

  • Schiffman, H. R., 1971, Depth perception as a function of age and photic condition of rearing, J. Comp. Physiol. Psychol. 76: 491–495.

    Article  PubMed  CAS  Google Scholar 

  • Schiller, P. H., and Malpeli, J. G., 1977, Properties and tectal projections of monkey retinal ganglion cells, J. Neurophysiol. 40: 428–495.

    PubMed  CAS  Google Scholar 

  • Schneider, G. E., 1969, Two visual systems: Brain mechanisms for localization and discrimination are dissociated by tectal and cortical lesions, Science 163: 895–902.

    Article  PubMed  CAS  Google Scholar 

  • Schneider, G. E., 1970, Mechanisms of functional recovery following lesions of the visual cortex or superior colliculus in neonate and adult hamsters, Brain Behar. Evol. 3: 285–323.

    Article  Google Scholar 

  • Schneider, G. E., and Jhaveri, S. R., 1974, Neuroanatomical correlates of spared or altered function after brain lesions in the newborn hamster, in: Plasticity and Recovery of Function in the Central Nervous Systems (D. G. Stein, J. J. Rosen, and N. Butters, eds.), Academic Press, New York, pp. 65–109.

    Google Scholar 

  • Sengelaub, D. R., Windrem, M. S., and Finlay, B. L., 1983, Increased cell number in the adult hamster retinal ganglion cell layer after early removal of one eye, Exp. Brain Res. 52: 269–276.

    Article  PubMed  CAS  Google Scholar 

  • Siminoff, R., Schwassman, H. O., and Kruger, L., 1966, An electrophysiological study of the visual projection to the superior colliculus of the rat, J. Comp. Neural. 127: 435–444.

    Article  CAS  Google Scholar 

  • Stein, B. E., 1981, Organization of the rodent superior colliculus:some comparisons with other mammals, Behar. Brain Res. 3: 175–188.

    Article  CAS  Google Scholar 

  • Stein, B. E., and Dixon, J. P., 1978, Superior colliculus cells respond to noxious stimuli, Brain Res. 158: 65–73.

    Article  PubMed  CAS  Google Scholar 

  • Stein, B. E., and Dixon, J. F., 1979, Properties of superior colliculus neurons in the golden hamster, J. Comp. Neurol. 183: 269–284.

    Article  PubMed  CAS  Google Scholar 

  • Stein, B. E., Magalhaes-Castro, B., and Kruger, L., 1976, Relationship between visual and tactile representations in cat superior colliculus, J. Neurophysiol. 39: 401–419.

    PubMed  CAS  Google Scholar 

  • Sterling, P., and Wickelgren, B. G., 1969, Visual receptive fields in the superior colliculus of the cat, J. Neurophysiol. 32: 1–15.

    PubMed  CAS  Google Scholar 

  • Terashima, S.-I., and Goris, R. C., 1975, Tectal organization of pit viper infrared reception, Brain Res, 83: 490–494.

    Article  PubMed  CAS  Google Scholar 

  • Tiao, Y.-C., and Blakemore, C., 1976a, Functional organization in the superior colliculus of the golden hamster, J. Comp. Neural. 168: 483–504.

    Article  CAS  Google Scholar 

  • Tio, Y.-C., and Blakemore, C. 19766, Functional organization in the visual cortex of the golden hamster, J. Comp. Neurol. 168: 459–482.

    Google Scholar 

  • Tiao, Y.-C., and Blakemore, C., 1976, Regional specialization in the golden hamster’s retina, J. Comp. Neurol. 168: 439–458.

    Article  PubMed  CAS  Google Scholar 

  • Van Essen, D. C., 1979, Visual areas of the mammalian cerebral cortex, Anna. Rev. Neurosci. 2: 227–263.

    Article  Google Scholar 

  • Vogt, B. A., and Peters, A., 1981, Formal distribution of neurons in rat cingulate cortex: Areas 32, 24 and 29, J. Comp. Neurol. 195: 603–625.

    Article  PubMed  CAS  Google Scholar 

  • Waldron, H. A., and Gwyn, D. G., 1969, Descending nerve tracts in the spinal cord of the rat. I. Fibers from the midbrain, J. Comp. Neurol. 137: 143–154.

    Article  PubMed  CAS  Google Scholar 

  • Wiesenfeld, Z., and Branchek, T., 1976, Refractive state and visual acuity in the hooded rat, Vision Res. 16: 823–827.

    Article  PubMed  CAS  Google Scholar 

  • Wiesenfeld, Z., and Kornel, E. E., 1975, Receptive fields of single cells in the visual cortex of the hooded rat, Brain Res. 94: 401–412.

    Article  PubMed  CAS  Google Scholar 

  • Woolsey, C. N., Carlton, T. G., Kaas, J. H., and Earls, F. J., 1971, Projection of the visual field on superior colliculus of ground squirrel (Citellus tridecemlineatus), Vision Res. 11: 115–127.

    Article  PubMed  CAS  Google Scholar 

  • Woolsey, T. A., Welker, C., and Schwartz, R. H., 1975, Comparative anatomical studies of the sml face cortex with special reference to the occurrence of “barrels” in layer IV, J. Comp. Neurol. 164: 79–94.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Finlay, B.L., Berian, C.A. (1985). Visual and Somatosensory Processes. In: Siegel, H.I. (eds) The Hamster. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0815-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0815-8_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0817-2

  • Online ISBN: 978-1-4757-0815-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics