Skip to main content

Biological Rhythms

  • Chapter
The Hamster

Abstract

The most widely studied category of hamster biological rhythms is that for which the expected period is 24 hr. Such rhythms are considered to be true “circadian rhythms” if the periodicity of the event deviates slightly from 24 hr in the absence of known time-giving cues (Zeitgebern). Without a Zeitgeber, rhythms such as that for locomotor activity will assume a frequency unconstrained by an external synchronizing agent. This “free run” (Fig. 1) is considered to demonstrate an endogenous, self-sustained oscillation with a period near 24 hr, thus, a circadian rhythm. Timing for such a rhythm is presumed to be derived from a circadian “clock.” The existence of such clocks is now generally accepted, although a contrary view does exist (see Brown, 1976; Brown and Scow, 1978).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albers, H. E., Carter, D. S., Darrow, J. M., and Goldman, B. D., 1982, Circadian rhythms of body temperature and wheelrunning in the Turkish hamster (Mesocricetus brandti), Society for Neuroscience 12th Annual Meeting Minneapolis, Minnesota, Abstr. 14. 11.

    Google Scholar 

  • Albers, H. E., Ferris, C. F., Leeman, S. E., and Goldman, B. D., 1984, Avian pancreatic polypeptide phase shifts hamster circadian rhythms when microinjected into the suprachiasmatic region, Science 223: 833–835.

    Article  PubMed  CAS  Google Scholar 

  • Alleva, J. J., Waleski, M. V., and Alleva, F. R., 1971, A biological clock controlling the estrous cycle of the hamster, Endocrinology. 88: 1368–1379.

    Article  PubMed  CAS  Google Scholar 

  • Andrews, R. V., 1968, Temporal secretory responses of cultured hamster adrenals, Comp. Biochem. Physiol. 26: 179–193.

    Article  PubMed  CAS  Google Scholar 

  • Andrews, R. V., 1971, Circadian rhythms in adrenal organ cultures, Gegenbours Morph. Jahrh. Leipzig 117: 89–98.

    CAS  Google Scholar 

  • Andrews, R. V., 1980, Phase response profile of hamster adrenal organ cultures treated with ACTH and exogenous steroid, Comp. Biochem. Physiol. 67A: 257–277.

    Article  Google Scholar 

  • Andrews, R. V., and Folk, G. E., 1964, Circadian metabolic patterns in cultured hamster adrenal glands, Comp. Biochem. Physiol. 11: 393–409.

    Article  PubMed  CAS  Google Scholar 

  • Aschoff, J., 1960, Exogenous and endogenous components in circadian rhythms, Cold Spring Harbor Symp. Quant. Biol. 25: 11–27.

    Article  PubMed  CAS  Google Scholar 

  • Aschoff, J., 1965, Circadian vocabulary, in: Circadian Clocks ( J. Aschoff, ed.), North Holland, Amsterdam, pp. x—xix.

    Google Scholar 

  • Aschoff, J., 1978, Circadian rhythms: Influences of internal and external factors on the period measured in constant conditions, Z. Tierpsychol. 49: 225–249.

    Article  Google Scholar 

  • Aschoff, J., Figala, J., and Poppel, E., 1973, Circadian rhythms in locomotor activity in the golden hamster (Mesocricetus auratus) measured with two different techniques, J. Comp. Physiol. Psycho!. 85: 20–28.

    Article  CAS  Google Scholar 

  • Aschoff, J., Hoffmann, K., Pohl, H., and Weyer, R., 1975, Re-entrainment of circadian rhythms after phase-shifts of the Zeitgeber, Chronobiologia 2: 23–78.

    PubMed  CAS  Google Scholar 

  • Aschoff, J., Gerecke, U., Von Goetz, C., Groos, G. A., and Turek, F. W., 1982, Phase responses and characteristics of free-running activity rhythms in the golden hamster: Independence of the pineal gland, in: Vertebrate Circadian Systems (J. Aschoff, S. Daan, and G. Groos, eds.), Springer-Verlag, Berlin, pp. 129–140.

    Chapter  Google Scholar 

  • Baranczuk, R. and Greenwald, G. S., 1973, Peripheral levels of estrogen in the cyclic hamster, Endocrinology 92: 805–812.

    Article  PubMed  CAS  Google Scholar 

  • Beasley, L. J., and Nelson, R. J., 1982, Thyroid gland influences the period of hamster circadian oscillations, Experientia 28: 870–871.

    Article  Google Scholar 

  • Berk, M. L., and Finkelstein, J. A., 1981, An autoradiographie determination of the efferent projections of the suprachiasmatic nucleus of the hypothalamus, Brain Res. 226: 1–13.

    Article  PubMed  CAS  Google Scholar 

  • Bittman, E. L., 1978, Photoperiodic influences on testicular regression in the golden hamster: Termination of scotorefractoriness, Biol. Reprod. 17: 971–977.

    Google Scholar 

  • Borer, K. T., Rowland, N., Mirow, A., Borer, R. C., Jr., and Kelch, R. P., 1980, Physiological and behavioral responses to starvation in the golden hamster, Am. J. Physiol. 236: E105 — E112.

    Google Scholar 

  • Borer, K. T., Campbell, C. S., Gordon, L., Jorgenson, K., and Tabor, J., 1981, Exercise reinstates estrous cycles in hamsters maintained in short photoperiod, Society for Neuroscience 11th Annual Meeting, Los Angeles, Abstr. 70. 14.

    Google Scholar 

  • Boulos, Z., and Morin, L. P., 1982, Entrainment of split circadian rhythms in hamsters. Society for Neuroscience 12th Annual Meeting, Minneapolis, Abst. 151. 10.

    Google Scholar 

  • Boulos, Z., and Rusak, B., 1982, Circadian phase response curves for dark pulses in the hamster, J. Comp. Physiol. 146: 411–417.

    Article  Google Scholar 

  • Brown, F. A., 1976, Evidence for external timing of biological clocks, in: An Introduction to Biological Rhythms ( J. D. Palmer, Ed.), Academic, New York, pp. 209–279.

    Google Scholar 

  • Brown, F. A., and Scow, K. M., 1978, Magnetic induction of a circadian cycle in hamsters, J. Interdiscip. Cycle Res. 9: 137–145.

    Article  Google Scholar 

  • Brown, J. M., and Berry, R. J., 1968, The relationship between diurnal variation of the number of cells in mitosis and of the number of cells synthesizing DNA in the epithelium of the hamster cheek pouch, Cell Tissue Kinet. 1: 23–33.

    CAS  Google Scholar 

  • Bruce, V. G., 1960, Environmental entrainment of circadian rhythms, Cold Spring HarborSymp. Quant. Biol. 25: 29–47.

    Article  Google Scholar 

  • Bunning, E., 1936, Die endonome Tagesperiodik als Grundlage der photoperiodischen Reaktion, Ber. Dtsch. Bot. Ges. 54: 590–607.

    Google Scholar 

  • Bunning, E., 1958, Das Weiterlaufen der “physiologischen Uhr” im Saugerdarm ohne zentrale Steuerung, Naturwissenschaften 45: 68.

    Article  Google Scholar 

  • Burns, J. T., and Meier, A. H., 1981, A circadian rhythm in insulin overdose in the golden hamster (Mesocricetus auratus), in: Chronopharntacology and Chronotherapeutics ( C. A. Walker, K. F. A. Soliman, and C. M. Winget, eds.), Florida A, M University Foundation, Tallahassee, pp. 315–318

    Google Scholar 

  • Campbell, C. S., Finkelstein, J. S., and Turek, F. W., 1978, The interaction of photoperiod and testosterone on the development of copulatory behavior in castrated male hamsters, Physiol. Behar. 21: 409–415.

    Article  CAS  Google Scholar 

  • Card, J. P., and Moore, R. Y., 1982, Ventral lateral geniculate nucleus efferents to the rat suprachiasmatic nucleus exhibit avian pancreatic polypeptide-like immunoreactivity, J. Comp. Neurol. 206: 390–396.

    Article  PubMed  CAS  Google Scholar 

  • Card, J. P., and Moore, R. Y., 1984, The suprachiasmatic nuclei of the golden hamster: Immunohistochemical analysis of cell and fiber distribution, Neuroscience,in press.

    Google Scholar 

  • Carlisle, G., 1975, Entrainment of circadian activity rhythms of female golden hamsters after lesions in the lateral geniculate nucleus, unpublished undergraduate honors thesis in psychology, Univ. California, Berkeley.

    Google Scholar 

  • Carmichael, M. S., and Zucker, I., 1982, Entrainment to non-24-hr days and gestation length of golden hamsters, J. Reprod. Fertil. 66: 691–693.

    Article  PubMed  CAS  Google Scholar 

  • Carmichael, M. S., Nelson, R. J., and Zucker, I., 1981, Hamster activity and estrous cycles: Control by a single versus multiple circadian oscillator(s), Proc. Natl. Acad. Sci. 78: 7830–7834.

    Article  PubMed  CAS  Google Scholar 

  • Chaudhry, A. P., Halberg, F., Keeman, C. E., Harner, R. N., and Bittner, J. J., 1958, Daily rhythms in rectal temperature and in epithelial mitoses of hamsterpinna and pouch, J. Appl. Physiol. 12: 221–224.

    PubMed  CAS  Google Scholar 

  • Craig, C., Tamarkin, L., Garrick, N., and Wehr, T. A., 1981, Long-term and short-term effects of clorgyline (a monoamine oxidase type A inhibitor) on locomotor activity and pineal melatonin in hamster, Society for Neuroscience 11th Annual Meeting, Los Angeles, Abst. #229. 14.

    Google Scholar 

  • Daan, S., and Aschoff, J., 1975, Circadian rhythms of locomotor activity in captive birds and mammalian activity rhythms, J. Theor. Biol. 70: 592–597.

    Google Scholar 

  • Daan, S., and Pittendrigh, C. S., 1976a, A functional analysis of circadian pacemakers in nocturnal rodents.

    Google Scholar 

  • II. The variability of phase response curves, J. Comp. Physiol. 106: 253–266.

    Google Scholar 

  • Daan, S., and Pittendrigh, C. S., 19766, A functional analysis of circadian pacemakers in nocturnal rodents.

    Google Scholar 

  • III. Heavy water and constant light: Homeostasis of frequency? J. Comp. Physiol. 106:267–290. Daan, S., and Slopsema, S., 1978, Short-term rhythms in foraging behavior of the common vole, Microtus arvalis, J. Comp. Physiol. 127: 215–227.

    Google Scholar 

  • Dark, J., 1980, Partial isolation of the suprachiasmatic nuclei: Effects on circadian rhythms of rat drinking behavior, Physiol. Behay. 25: 863–873.

    Article  CAS  Google Scholar 

  • Davis, F. C., and Gorski, R. A., 1981, Functional symmetry of the suprachiasmatic nuclei, Society for Neuroscience 11th Annual Meeting, Los Angeles, Abstr. #18. 13.

    Google Scholar 

  • Davis, F. C., and Gorski, R. A., 1982, Perinatal entrainment of hamster circadian rhythms, Society for Neuroscience 12th Annual Meeting, Minneapolis, Abstr. 14. 10.

    Google Scholar 

  • Davis, F. C., and Menaker, M., 1980, Hamsters through time’s window: Temporal structure of hamster locomotor rhythmicity, Am. J. Physiol. 239: R149–R155.

    PubMed  CAS  Google Scholar 

  • Davis, F. C., Darrow, J. M., and Menaker, M., 1983, Sex differences in the circadian control of hamster wheelrunning activity, Am. J. Physiol. 244: R93–R 104.

    Google Scholar 

  • Davis, G. J., and Meyer, R. K., 1973, FSH and LH in the Snowshoe hare during the increasing phase of the 10-year cycle, Gen. Comp. Endocrinol. 20: 53–60.

    Article  PubMed  CAS  Google Scholar 

  • DeCoursey, P. J., 1960, Phase control of activity in a rodent, Symp. Quant. Biol. 25: 49–54.

    Article  CAS  Google Scholar 

  • DeCoursey, P. A., 1964, Function of a light response rhythm in hamsters, J. Cell. Comp, Physiol. 63: 189–196.

    CAS  Google Scholar 

  • Dewsbury, D. A., 1968, Copulatory behavior of rats—Variations within the dark phase of the diurnal cycle, Commun. Behar. Biol. AI: 373–377.

    Google Scholar 

  • Earnest, D. J., and Turek, F. W., 1982, Splitting of the circadian rhythm of activity in hamsters: Effects of exposure to constant darkness and subsequent re-exposure to constant light,/ Comp. Physiol. 145: 405–411.

    Article  Google Scholar 

  • Earnest, D. J., and Turek, F. W., 1983a, Role for acetylcholine in mediating effects of light on reproduction, Science 219: 77–79.

    Article  PubMed  CAS  Google Scholar 

  • Earnest, D. J., and Turek, F. W., 1983b, Effect of one-second light pulses on testicular function and locomotor activity in the golden hamster, Biol. Reprod. 28: 557–565.

    Article  PubMed  CAS  Google Scholar 

  • Eichler, V. B., and Moore, R. Y., 1971, The primary and accessory optic systems in the golden hamster, Mesocricetus araums, Arta Anat. 89: 359–371.

    Article  Google Scholar 

  • Elliott, J. A., 1974, Photoperiodic regulation of testis function in the golden hamster: Relation to the circadian system, Ph.D. Dissertation, University of Texas.

    Google Scholar 

  • Elliott, J. A., 1976, Circadian rhythms and photoperiodic time measurement in mammals, Fed. Proc. 35: 2339–2346.

    Google Scholar 

  • Elliott, J. A., Stetson, M. H., and Menaker, M., 1972, Regulation of testis function in golden hamsters: A circadian clock measures photoperiodic time, Science 178: 771–773.

    Article  PubMed  CAS  Google Scholar 

  • Ellis, G. B., and Turek, F. W., 1979, Changes in locomotor activity associated with the photoperiodic response of the testes in male golden hamsters, J. Comp. Physiol. 132: 277–284.

    Article  Google Scholar 

  • Ellis, G. B., and Turek, F. W., 1981, Testosterone and the photoperiod interact to regulate daily locomotor activity in male golden hamsters, Fed, Proc. 40: 307.

    Google Scholar 

  • Ellis, G. B., McKlveen, R. E., and Turek, F. W., 1982, Dark pulses affect the circadian rhythm of activity in hamsters kept in constant light, Am. J. Physiol. 242: R44 — R50.

    PubMed  CAS  Google Scholar 

  • Eriksson, L. 0., 1973, Spring inversion of the diel rhythm of locomotor activity in young sea-going trout (Selmo trutta trutta L.) and Atlantic salmon (Salmo salar L.), Aquilo Ser. Zool. 14: 68–79.

    Google Scholar 

  • Eskes, G. A., 1982, Significance of daily cycles in sexual behavior of the male golden hamster, in: Vertebrate Circadian Systems (J. Aschoff, S. Daan, and G. Groos, eds.), Springer-Verlag, New York, pp. 347–353.

    Chapter  Google Scholar 

  • Eskes, G. A., and Zucker, I., 1978, Photoperiodic regulation of the hamster testis: Dependence on circadian rhythms, Proc. Natl. Acad. Sci. 75: 1034–1038.

    Article  PubMed  CAS  Google Scholar 

  • Everett, J. W., Sawyer, C. H., and Markee, J. E., 1949, A neurogenic timing factor in control of the ovulatory discharge of luteinizing hormone in the cyclic rat, Endocrinology 44: 234–250.

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein, J. S., Baum, F. R., and Campbell, C. S., 1978, Entrainment of the female hamster to reversedphotoperiod: Role of the pineal, Physiol. Behar. 21: 105–111.

    Google Scholar 

  • Fitzgerald, K. M., and Zucker, I., 1976, Circadian organization of the estrous cycle of the golden hamster, Proc. Natl. Acad. Sci. 73: 2923–2927.

    Google Scholar 

  • Fitzgerald, K., Zucker, I., and Rusak, B., 1978, An evaluation of homeostasis of circadian periodicity in the golden hamster, J. Comp. Physiol. 123: 265–269.

    Article  CAS  Google Scholar 

  • Folk, G. E., Schellinger, R. R., and Snyder, D., 1961, Day-night changes after exercise in body temperature and heart rates of hamsters, Iowa Acad. Sci. 68: 594–602.

    Google Scholar 

  • Follett, B. K., Earner, D. S., and Morton, M. L., 1967, The effects of alternating long and short photoperiods on gonadal growth and pituitary gonadotropins in the white-crowned sparrow, Zonotrichia leucophrys gambelii, Biol. Bull. 133: 333–342.

    Article  Google Scholar 

  • Gaston, S., and Menaker, M., 1967, Photoperiodic control of hamster testis, Science 158: 925–928.

    Article  PubMed  CAS  Google Scholar 

  • Gibbs, F. P., 1983, Temperature dependence of the hamster circadian pacemaker, Am. J. Physiol. 244: R607 — R610.

    PubMed  CAS  Google Scholar 

  • Guicking, A., 1970, Uber den Einfluss von Schall auf die tagesperiodische Aktivitat des Goldhamsters. I, J. Interdiscip. Cycle Res. 1: 323–334.

    Google Scholar 

  • Joseph, M. M., and Meier, A. H., 1974, Circadian component in the fattening and reproductive responses to prolactin in the hamster, Proc. Soc. Exp. Biol. Med. 146: 1150–1155.

    Google Scholar 

  • Krieger, O. T., 1980, Ventromedial hypothalamic lesions abolish food-shifted circadian adrenal and temperature rhythmicity, Endocrinology 106: 649–654.

    Article  PubMed  CAS  Google Scholar 

  • Kripke, D. F., and Wyborney, V. G., 1980, Lithium slows rat circadian activity rhythms, Life Sci. 26: 1319–1320.

    Article  PubMed  CAS  Google Scholar 

  • Krug, M., Brodemann, R., and Ott, T., 1981, Identical responses of the two hippocampal theta generators to physiological and pharmacological activation, Brain Res. Bull. 6: 5–11.

    Google Scholar 

  • Landau, I. T., 1975a, Light-dark rhythms in aggressive behavior of the male golden hamster, Physiol. Behar. 14: 767–774.

    Google Scholar 

  • Landau, I. T., 1975b, Effects of adrenalectomy on rhythmic and non-rhythmic aggressive behavior in the male golden hamster, Physiol. Behar. 14: 775–780.

    Article  CAS  Google Scholar 

  • Larsson, K., 1958, Age differences in the diurnal periodicity of male sexual behavior, Gerontologia 2: 64–72.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J. G., Hallonquist, J. D. and Mrosovsky, N., 1983, Differential effects of dark pulses on the two components of split circadian activity rhythms in golden hamsters, J. Comp. Physiol. 153: 123–132.

    Article  Google Scholar 

  • Lehmann, V., 1976, Short-term and circadian rhythms in the behaviour of the vole, Microtus agnestis (L.), Oecologia 23: 185–199.

    Article  Google Scholar 

  • Lisk, R. D., and Sawyer, C. H., 1966, Induction of paradoxical sleep by lights off stimulation, Proc. Soc. Exp. Biol. 123: 664–667.

    PubMed  CAS  Google Scholar 

  • Maloney, E. S., 1978, Dutton’s Navigation and Piloting, 13th Edition, United States Naval Institute, Annapolis, Maryland, pp. 359–416.

    Google Scholar 

  • McEachron, D. L., Kripke, D. F., and Wyborney, V. G., 1981, Lithium promotes entrainment of rats to long circadian light-dark cycles, Psychiatr. Res. 2: 511–519.

    Google Scholar 

  • Menaker, M., 1982, The search for principles of physiological organization in vertebrate circadian systems, in: Vertebrate Circadian Systems ( J. Aschoff, S. Daan, and G. A. Groos, eds.), Springer-Verlag, New York, pp. 1–12.

    Chapter  Google Scholar 

  • Mistelberger, R., 1982, Entrainment to food and light schedules in VMH lesioned rats, Society for Neuroscience i2th Annual Meeting, Minneapolis, Abstr. 151. 13.

    Google Scholar 

  • Moline, M. L., Albers, H. E., Todd, R. B., and Moore-Ede, M. C., 1981, Light-dark entrainment of proestrous LH surges and circadian locomotor activity in female hamsters, Horm. Behay. 15: 451–458.

    Article  CAS  Google Scholar 

  • Moller, U., 1978, Interaction of external agents with the circadian mitotic rhythm in the epithelium of the hamster cheek pouch, J. Interdiscip. Cycle Res. 9: 105–114.

    Article  Google Scholar 

  • Moller, U., and Bojsen, J., 1974, The circadian temperature rhythm in Syrian hamsters as a function of the number of animals per cage, J. Interdiscip. Cycle Res. 5: 61–69.

    Article  Google Scholar 

  • Moller, V., Larsen, J. K., and Faber, M., 1974, The influence of injected tritiated thymidine on the mitotic circadian rhythm in the epithelium of the hamster cheek pouch, Cell Tissue Kinet. 7: 231–239.

    PubMed  CAS  Google Scholar 

  • Moore, R. Y., 1973, Retinohypothalamic projections in mammals: A comparative study, Brain Res. Bull. 49: 403–409.

    CAS  Google Scholar 

  • Moore, R. Y., 1983, Organization and function of a CNS circadian oscillator: The suprachiasmic hypothalamic nucleus, Fed. Proc., 42: 2783–2789.

    PubMed  CAS  Google Scholar 

  • Moore, R. Y., and Eichler, V. B., 1972, Loss of circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat, Brain Res. 42: 201–206.

    Article  PubMed  CAS  Google Scholar 

  • Moore, R. Y., and Eichler, V. B., 1976, Central neural mechanisms in diurnal rhythm regulation and neuroendocrine responses to light, Psychoneuroendocrinology 1: 265–279.

    Article  PubMed  CAS  Google Scholar 

  • Moore, R. Y., Gustafson, E. L., and Card, J. P., 1984, Identical immunoreactivity of afferents to the rat suprachiasmatic nucleus with antisera against avian pancreatic polypeptide, molluscan cardioexcitatory peptide and neuropeptide Y, Cell Tiss. Res. 236: 41–46.

    Article  CAS  Google Scholar 

  • Moore, R. Y., and Lenn, N. J., 1972, A retinohypothalamic projection in the rat, J. Comp. Neural. 146:1— 14.

    Google Scholar 

  • Moore-Ede, M. D., Schmelzer, W. S., Kass, D. A., and Herd, J. A., 1976, Internal organization of the circadian timing system in multicellular animals, Fed. Proc. 35: 2333–2338.

    PubMed  CAS  Google Scholar 

  • Morgan, W. W., Pfeil, K. A., Reiter, R. J., and Gonzales, E., 1976, Comparison of changes in tryptophan and serotonin in regions of the hamster and the rat brain over a twenty-four hour period, Brain Res. 117: 77–84.

    Article  PubMed  CAS  Google Scholar 

  • Morin, L. P., 1977, Progesterone: Inhibition of rodent sexual behavior, Physiol. Behay. 18: 701–715.

    Article  CAS  Google Scholar 

  • Morin, L. P., 1978, Rhythmicity of hamster gnawing: Ease of measurement and similarity to running activity, Physiol. Behay. 21: 317–320.

    Article  CAS  Google Scholar 

  • Morin, L. P., 1980, Effect of ovarian hormones on synchrony of hamster circadian rhythms, Physiol. Behay. 25: 741–749.

    Article  Google Scholar 

  • Morin, L. P., 198 la, An effect of photoperiod history on reproductive function and a circadian rhythm of male hamsters, Physiol. Behay. 27: 89–94.

    Google Scholar 

  • Morin, L. P., 198 lb, Ultradian rhythms in hamster and rat eating, Soc. Neurosei. 11th Ann. Ming.,Los Angeles, Abst. #19.9.

    Google Scholar 

  • Morin, L. P., 1982a, Phase and period of female hamster running rhythms during the annual reproductive cycle. Society for Neuroscience 12th Annual Meeting, Minneapolis, Abst. #151. 9.

    Google Scholar 

  • Morin, L. P., 19826, Acute or longterm melatonin fails to block estradiol benzoate plus progesterone facilitation of hamster receptivity, Conference Rehsod. Behar.. E. Lansing (Abstract).

    Google Scholar 

  • Morin, L. P., and Cummings, L. A., 1981, Effect of surgical or photoperiodic castration, testosterone replacement or pinealectomy on male hamster running rhythmicity. Physiol. Behar. 26: 825–838.

    Article  CAS  Google Scholar 

  • Morin, L. P., and Cummings, L. A., 1982, Splitting of wheelrunning rhythms by castrated or steroid treated male and female hamsters, Physiol. Behay. 29: 665–675.

    Article  CAS  Google Scholar 

  • Morin, L. P., and Zucker, I., 1978, Photoperiodic regulation of copulatory behavior in the male hamster, J. Endocrinol. 77: 249–258.

    Article  PubMed  CAS  Google Scholar 

  • Morin, L. P., Fitzgerald, K. M., Rusak, B., and Zucker, I., 1977a, Circadian organization and neural mediation of hamster reproductive rhythms, Psychoneuroendocrinology 2: 73–98.

    Article  PubMed  CAS  Google Scholar 

  • Morin, L. P., Fitzgerald, K. M., and Zucker, I., 19776, Estradiol shortens the period of hamster circadian rhythms, Science 196: 305–307.

    Google Scholar 

  • Mrsovsky, N., 1975, The amplitude and period of circannual cycles of body weight in golden-mantled ground squirrels with medial hypothalamic lesions, Brain Res. 99: 97–116.

    Article  Google Scholar 

  • Mrsovsky, N., 1978, Circannual cycles in hibernators, in: Strategies in Cold: Natural Torpidity and Thermogenesis ( L. C. H. Wang and J. W. Hudson, eds.), New York, Academic Press, pp. 21–66.

    Google Scholar 

  • Nishio, T., Shiosaka, S., Nakagawa, H., Sakumoto, T., and Satoh, K., 1979, Circadian feeding rhythm after hypothalamic knife-cut isolating suprachiasamatic nucleus, Physiol. Behay. 23: 763–769.

    Google Scholar 

  • Nunez, A. A., and Stephan, F. K., 1977, The effects of hypothalamic knife cuts on drinking rhythms and the estrus cycle of the rat, Behay. Biol. 20: 224–234.

    Google Scholar 

  • Pengelley, E. T., Asmundson, S. J., Barnes, B., and Aloia, R. C., 1976, Relationship of light intensity and photoperiod to circannual rhythmicity in the hibernating ground squirrel, Citellus lateralis, Comp. Biochem. Physiol. 53A: 273–277.

    Article  CAS  Google Scholar 

  • Philo, R., Rudeen, P. K., and Reiter, R. J., 1977, A comparison of the circadian rhythms and concentrations of serotonin and norepinephrine in the telencephalon of four rodent species, Comp. Biochem. Physiol, 57C: 127–130.

    Article  CAS  Google Scholar 

  • Pickard, G. E., 1980, Morphological characteristics of retinal ganglion cells projecting to the suprachiasmatic nucleus: A horseradish perioxidase study, Brain Res. 183: 458–465.

    Article  PubMed  CAS  Google Scholar 

  • Pickard, G. E., 1982, The afferent connections of the suprachiasmatic nucleus of the golden hamster with emphasis on the retinohypothalamic projection, J. Comp. Neural. 211: 65–83.

    Article  CAS  Google Scholar 

  • Pickard, G. E., and Silverman, J.-A., 1981, Direct retinal projections to the hypothalamus piriform cortex, and accessory optic nuclei in the golden hamster as demonstrated by a sensitive anterograde horseradish perocidase technique, J. Comp. Neural. 196: 155–172.

    Article  CAS  Google Scholar 

  • Pickard, G. E., and Turek, F. W., 1982, Splitting of the circadian rhythm of activity is abolished by unilateral lesions of the suprachiasmatic nuclei, Science 215: 1119–1121.

    Article  PubMed  CAS  Google Scholar 

  • Pickard, G. E., and Turek, F. W., 1983, The suprachiasmatic nuclei: Two circadian clocks? Brain Res. 268: 201–210.

    Article  PubMed  CAS  Google Scholar 

  • Pittendrigh, C. S., 1960, Circadian rhythms and circadian organization of living systems, Cold Spring Harbor Symp. Quant. Biol. 25: 159–182.

    Google Scholar 

  • Pittendrigh, C. S., 1967, Circadian rhythms, space research and manned space flight, in: Life Sciences and Space Research V, pp. 122–134, Amsterdam, North Holland.

    Google Scholar 

  • Pittendrigh, C. S., 1974, Circadian oscillations in cells and the circadian organization of multicellular systems, in: The Neurosciences, Third Study Program ( F. O. Schmitt and F. G. Worden, eds.), MIT Press, Cambridge, pp. 437–358.

    Google Scholar 

  • Pittendrigh, C. S., and Daan, S., 1974, Circadian oscillations in rodents: A systematic increase of their frequency with age, Science 186: 548–550.

    Article  PubMed  CAS  Google Scholar 

  • Pittendrigh, C. S., and Daan, S., 1976a, A functional analysis of circadian pacemakers in nocturnal rodents. I. The stability and lability of spontaneous frequency, J. Comp. Physiol. 106: 223–252.

    Article  Google Scholar 

  • Pittendrigh, C. S., and Daan, S., 19766, A functional analysis of circadian pacemakers in nocturnal rodents. IV. Entrainment: Pacemaker as clock, J. Comp. Physiol. 106: 291–331.

    Google Scholar 

  • Pittendrigh, C. S., and Daan, S., 1976e, A functional analysis of circadian pacemakers in nocturnal rodents. V. Pacemaker structure: A clock for all seasons, J. Comp. Physiol. 106: 333–355.

    Google Scholar 

  • Pohl, H., 1976, Proportional effects of light on entrained circadian rhythms of birds and mammals, J. Comp. Physiol. 112: 103–108.

    Google Scholar 

  • Rawson, K. S., 1960, Effects of tissue temperature on mammalian activity rhythms, Cold Spring Harbor Symp. Quant. Biol. 24: 105–113.

    Google Scholar 

  • Reiter, R. J., 1974, Circannual reproductive rhythms in mammals related to photoperiod and pineal function: A review, Chronobiologica 1: 365–395.

    CAS  Google Scholar 

  • Richards, M. P. M., 1966, Activity measured by running wheels and observations during the oestrous cycle, pregnancy and pseudopregnancy in the golden hamster, Anim. Behay. 14: 450–458.

    Article  CAS  Google Scholar 

  • Richter, C. P., 1965, Biological Clocks in Medicine and Psychiatry, Thomas, Springfield, Illinois, p. 10. Richter, C. P., 1970, Dependence of successful mating in rats on functioning of 24-hour clocks of the male and female, Commun. Behay. Biol. A5: 1–5.

    Google Scholar 

  • Richter, C. P., 1975, Deep hypothermia and its effect on the 24-hour clock of rats and hamsters, Johns Hopkins Med. J. 136: 1–10.

    PubMed  CAS  Google Scholar 

  • Richter, C. P., 1977, Heavy water as a tool for study of the forces that control length of period of the 24-hour clock of the hamster, Proc. Natl. Acad. Sci. 74: 1295–1299.

    Article  PubMed  CAS  Google Scholar 

  • Riley, J. N., Card, J. P., and Moore, R. Y., 1981, A retinal projection to the lateral hypothalamus in the rat, Cell Tissue Res. 214: 257–269.

    Article  PubMed  CAS  Google Scholar 

  • Rowland, N., 1976, Endogenous circadian rhythms in rats recovered from lateral hypothalamic lesions, Physiol. Behay. 16: 257–266.

    Article  CAS  Google Scholar 

  • Rusak, B., 1977a, The role of the suprachiasmatic nuclei in the generation of circadian rhythms in the golden hamster, Mesocrrcetus auratus, J. Comp. Physiol. 118: 145–164.

    Article  Google Scholar 

  • Rusak, B., 19776, Involvement of the primary optic tracts in mediation of light effects on hamster circadian rhythms, J. Comp. Physiol. 118: 165–172.

    Google Scholar 

  • Rusak, B., and Boulos, Z., 1981, Pathways for photic entrainment of mammalian circadian rhythms, Photochem. Photobiol. 34: 267–273.

    PubMed  CAS  Google Scholar 

  • Rusak, B., and Groos, G., 1982, Suprachiasmatic stimulation phase shifts rodent circadian rhythms, Science 215: 1407–1409.

    Article  PubMed  CAS  Google Scholar 

  • Rusak, B., and Morin, L. P., 1976, Testicular responses to photoperiod are blocked by lesions of the suprachiasmatic nuclei in golden hamsters, Biol. Reprod. 15: 366–374.

    Article  PubMed  CAS  Google Scholar 

  • Satinoff, E., Liran, J., and Clapman, R., 1982, Aberrations of circadian body temperature rhythms in rats with medial preoptic lesions, Am. J. Physiol. 242: R35 — R357.

    Google Scholar 

  • Shibuya, C. A., Melnyk, R. B., and Mrosovsky, N., 1980, Simultaneous splitting of drinking and loco-motor activity rhythms in golden hamsters, Naturwissenschaften 67: 45–56.

    Article  PubMed  CAS  Google Scholar 

  • Silverman, H. J., and Zucker, I., 1976, Absence of post-fast food compensation in golden hamster (Mesocricetus auratus), Physiol. Behay. 17: 271–285.

    Article  CAS  Google Scholar 

  • Sisk, C. L., and Stephan, F. K., 1981, Phase shifts of circadian rhythms of activity and drinking in the hamster, Behay. Neural Biol. 33: 334–344.

    Article  Google Scholar 

  • Sisk, C. L., and Turek, F. W., 1982, Role of the inter-connection of the suprachiasmatic nuclei in the hamster circadian system, Society for Neuroscience 12th Annual Meeting, Minneapolis, Abstr. 14. 9.

    Google Scholar 

  • Stephan, F. K., and Nunez, A. A., 1979, Elimination of circadian rhythms in drinking, sleep and temperature by isolation of the suprachiasmatic nuclei, Behay. Biol. 20: 1–16.

    Article  Google Scholar 

  • Stephan, F. K., and Zucker, I., 1972, Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions, Proc. Natl. Acad. Sci. U.S.A. 69: 1583–1586.

    Article  PubMed  CAS  Google Scholar 

  • Stephan, F. K., Berkley, K. J., and Moss, R. L., 1981, Efferent connections of the rat suprachiasmatic nucleus, Neuroscience 6: 2625–2641.

    Article  PubMed  CAS  Google Scholar 

  • Stephan, F. K., Donaldson, J. A., and Gellert, J., 1982, Retinohypothalamic trait symmetry and phase shifts of circadian rhythms in rats and hamsters, Physiol. Behay. 29: 1153–1159.

    Article  CAS  Google Scholar 

  • Stetson, M. H., and Anderson, P. J., 1980, Circadian pacemaker times gonadotropin release in free-running female hamsters, Am. J. Physiol. 238: R23 — R27.

    PubMed  CAS  Google Scholar 

  • Stetson, M. H., and Gibson, J. T., 1977, The estrous cycle in golden hamsters: A circadian pacemaker times preovulatory gonadotropin release, J. Exp. Zoo/. 201: 289–294.

    Article  CAS  Google Scholar 

  • Stetson, M. H., and Watson-Whitmyre, M., 1976, Nucleus suprachiasmaticus: The biological clock in the hamster? Science 191: 197–199.

    Article  PubMed  CAS  Google Scholar 

  • Stetson, M. H., Elliott, J. A., and Menaker, M., 1975, Photoperiodic regulation of hamster testis: Circadian sensitivity to the effects of light, Biol. Reprod. 13: 329–339.

    Article  PubMed  CAS  Google Scholar 

  • Stetson, M. H., Matt, K. S., and Watson-Whitmyre, M., 1976, Photoperiodism and reproduction in golden hamsters: Circadian organization and termination of photorefractoriness, Biol. Reprod. 14: 531–537.

    Article  PubMed  CAS  Google Scholar 

  • Stetson, M. H., Watson-Whitmyre, M., and Matt, K. S., 1977, Circadian organization in the regulation of reproduction: Timing of the 4-day estrous cycle of the hamster, J. Interdiscip. Cycle Res. 8: 350–352.

    Article  Google Scholar 

  • Swade, R. H., 1969, Circadian rhythms in fluctuating light cycles: Toward a new model of entrainment, J. Theor. Biol. 24: 227–239.

    Article  PubMed  CAS  Google Scholar 

  • Swade, R. H., and Pittendrigh, C. S., 1967, Circadian locomotor rhythms of rodents in the arctic, Am. Nat. 101: 431–466.

    Google Scholar 

  • Swann, J., and Turek, F. W., 1982, Cycle of lordosis behavior in female hamsters whose circadian activity rhythm has split into two components, Am. J. Physiol. 243:R112—RI18.

    Google Scholar 

  • Takahashi, J. S., and Menaker, M., 1980, Interaction of estradiol and progesterone: Effects on circadian locomotor rhythm of female golden hamsters, Am. J. Physiol. 239: R497 — R504.

    PubMed  CAS  Google Scholar 

  • Takahashi, J. S., and Zatz, M., 1982, Regulation of circadian rhythmicity, Science 217: 1104–1111.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, J. S., DeCoursey, P. J., Bauman, L., and Menaker, M., 1984, Spectral sensitivity of a novelphotoreceptive system mediating entrainment of mammalian circadian rhythms, Nature 308: 186–188.

    Article  PubMed  CAS  Google Scholar 

  • Toates, F. M., 1978, A circadian rhythm of hoarding in the hamster, Anim. Behay. 26: 631.

    Article  Google Scholar 

  • Tobler, I., and Borbely, A. A., 1977, Enhancement of paradoxical sleep by short light periods in the golden hamster, Neurosci. Lett. 6: 275–277.

    Google Scholar 

  • Turek, F. W., and Campbell, C. S., 1979, Photoperiodic regulation of neuroendocrine-gonadal activity, Biol. Reprod. 20: 32–50.

    Google Scholar 

  • Van Den Pol, A. N., and Powley, T., 1979, A fine-grained anatomical analysis of the role of the rat suprachiasmatic nucleus in circadian rhythms of feeding and drinking, Brain Res. 160: 307–326.

    Article  PubMed  Google Scholar 

  • Warden, A. W., 1978, Circadian rhythms of self-selected lighting in golden hamsters: Relation to gonadal condition, Chronobiologia 5:28–38.

    Google Scholar 

  • Warden, A. W., and Sachs, B. D., 1974, Circadian rhythms of self-selected lighting in hamsters, J. Comp. Physiol. 91: 127–134.

    Google Scholar 

  • Widmaier, E. P., and Campbell, C. S., 1980, Interactions of estradiol and photoperiod on activity patterns in the female hamster, Physiol. Behay. 24: 923–930.

    Article  CAS  Google Scholar 

  • Winfree, A. T., 1967, Biological rhythms and the behavior of populations of coupled oscillators, J. Theor. Biol. 16: 15–42.

    Google Scholar 

  • Winfree, A. T., 1971, Comment, in: Biochronometry ( M. Menaker, ed.) National Academy of Science, Washington, D.C., pp. 150–151.

    Google Scholar 

  • Wirz-Justice, A., and Campbell, I. C., 1982, Antidepressant drugs can slow or dissociate circadian rhythms, Experientia 38: 1301–1309.

    Article  PubMed  CAS  Google Scholar 

  • Zatz, M., 1979, Photoentrainment, pharmacology, and phase shifts of the circadian rhythm in the rat pineal, Fed. Proc. 38: 2596–2601.

    Google Scholar 

  • Zatz, M., and Brownstein, M. J., 1979, Intraventricular carbachol mimics the effects of light on the cricadian rhythm in the rat pineal gland, Science 203: 358–360.

    Article  PubMed  CAS  Google Scholar 

  • Zatz, M., and Herkenham, M. A., 1981, Intraventricular carbachol mimics the phase-shifting effect of light on the circadian rhythm of wheel-running activity, Brain Res. 212: 234–238.

    Article  PubMed  CAS  Google Scholar 

  • Zucker, I., and Stephan, F. K., 1973, Light-dark rhythms in hamster eating, drinking and locomotor behaviors, Physiol. Behay. 11: 239–250.

    Article  CAS  Google Scholar 

  • Zucker, I., Rusak, B., and King, R. G., 1976, Neural bases for circadian rhythms in rodent behavior, in: Advances in Psychobiology Volume 3 ( A. H. Riesen and R. F. Thompson, eds.), John Wiley and Sons, New York, pp. 35–74.

    Google Scholar 

  • Zucker, 1., Fitzgerald, K. M., and Morin, L. P., 1980a, Sex differentiation of the circadian system in the golden hamster, Am. J. Physiol. 238: R97 — R101.

    PubMed  CAS  Google Scholar 

  • Zucker, I., Cramer, C. P., and Bittman, E. L., 19806, Regulation by the pituitary gland of circadian rhythms in the hamster, J. Endocrinol. 85: 17–25.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Morin, L.P. (1985). Biological Rhythms. In: Siegel, H.I. (eds) The Hamster. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0815-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0815-8_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0817-2

  • Online ISBN: 978-1-4757-0815-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics