The Use of Monoclonal Antibodies in Studies of the Structural Proteins of Togaviruses and Flaviviruses

  • John T. Roehrig
Part of the The Viruses book series (VIRS)


Since the initial reports of the isolation and characterization of monoclonal antibodies (MAb’s) specific for alphaviruses (Roehrig et al., 1980) and flaviviruses (Dittmar et al., 1980), the arbovirus community has experienced a virtual explosion in the research applications of MAb’s to the antigenic analysis of these important human and veterinary pathogens. This research, reviewed in the following pages, has revolutionized our understanding of both the molecular and the clinical immunology of togaviruses and flaviviruses.


Japanese Encephalitis Virus Japanese Encephalitis Semliki Forest Virus Sindbis Virus Yellow Fever Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boere, W. A. M., Benaissa-Trouw, B. J., Harmsen, M., Kraaijeveld, C. A., and Snippe, H., 1983, Neutralizing and non-neutralizing monoclonal antibodies to the El glycoprotein of Semliki Forest virus can protect mice from lethal encephalitis, J. Gen. Virol. 64: 1405–1408.PubMedCrossRefGoogle Scholar
  2. Boere, W. A. M., Harmsen, M., Vinje, J., Benaissa-Trouw, B. J., Kraaijeveld, C. A., and Snippe, H., 1984, Identification of distinct determinants on Semliki forest virus by using monoclonal antibodies with different antiviral activities, J. Virol. 52: 575–582.PubMedGoogle Scholar
  3. Boere, W. A. M., Benaissa-Trouw, B. J., Harmsen, T., Erich, T., Kraaijeveld, C. A., and Snippe, H., 1985, Mechanisms of monoclonal antibody-mediated protection against virulent Semliki Forest virus, J. Virol. 54: 546–551.PubMedGoogle Scholar
  4. Brandt, W. E., McCown, J. M., Gentry, M. K., and Russell, P. K., 1982, Infection enhancement of Dengue type 2 virus in the U-937 human monocyte cell line by antibodies to flavivirus cross-reactive determinants, Infect. Immun 36: 1036–1041.PubMedGoogle Scholar
  5. Calisher, C. H., Shope, R. E., Brandt, W. E., Casals, J., Karabatsos, N., Murphy, F. M., Tesh, R. B., and Wiebe, M. E., 1980, Proposed antigenic classification of registered arboviruses. I. Togaviridae, alphaviruses, Intervirology 14: 229–232.PubMedCrossRefGoogle Scholar
  6. Casals, J., 1957, The arthropod-bome group of animal viruses, Trans. N. Y. Acad. Sci. 19: 219–235.PubMedCrossRefGoogle Scholar
  7. Casals, J., 1967, Immunological techniques for animal viruses, in: Methods in Virology ( H. Maramarosch and H. Koprowski, eds.), pp. 113–198, Academic Press, New York.Google Scholar
  8. Chanas, A. C., Johnson, B. K., and Simpson, D. I. H., 1976, Antigenic relationships of alphaviruses by a simple microculture cross-neutralization method, J. Gen. Virol. 32: 295–300.PubMedCrossRefGoogle Scholar
  9. Chanas, A. C., Gould, E. A., Clegg, J. C. S., and Varma, M. G. R., 1982, Monoclonal antibodies to Sindbis virus glycoprotein El can neutralize, enhance infectivity, and independently inhibit haemagglutination or haemolysis, J. Gen. Virol. 58: 37–46.PubMedCrossRefGoogle Scholar
  10. Clegg, J. C. S., Chanas, A. C., and Gould, E. A., 1983, Conformational changes in Sindbis virus El glycoprotein induced by monoclonal antibody binding, J. Gen. Virol. 64: 1121–1126.PubMedCrossRefGoogle Scholar
  11. Dalrymple, J. M., Vogel, S. N., and Teramoto, A. Y., 1973, Antigenic components of group A arbovirus virions, J. Virol. 12: 1034–1042.PubMedGoogle Scholar
  12. Dalrymple, J. M., Schlesinger, S., and Russell, P. K., 1976, Antigenic characterization of two Sindbis envelope glycoproteins separated by isoelectric focusing, Virology 69: 93–103.PubMedCrossRefGoogle Scholar
  13. DeMadrid, A. T., and Porterfield, J. S., 1974, The flaviviruses (group B arboviruses): A crossneutralization study, J. Gen. Virol. 23: 91–96.CrossRefGoogle Scholar
  14. Dittmar, D., Haines, H. G., and Castro, A., 1980, Monoclonal antibodies specific for dengue virus type 3, J. Clin. Microbiol. 12: 74–78.PubMedGoogle Scholar
  15. Ey, P. L., Prowse, S. J., and Jenkin, C. R., 1978, Isolation of pure IgGl, IgG2a, and IgG2b immunoglobulin from mouse serum using protein A-Sepharaose, Immunochemistry 15: 429–436.PubMedCrossRefGoogle Scholar
  16. Gentry, M. K., Henchal, E. A., McCown, J. M., Brandt, W. E., and Dalrymple, J. M., 1982, Identification of distinct antigenic determinants on dengue-2 virus using monoclonal antibodies, Am. J. Trop. Med. Hyg. 31: 548–555.PubMedGoogle Scholar
  17. Goding, J. W., 1967, Use of staphylococcal A as an immunological reagent, J. Immunol. Methods 20: 241–253.CrossRefGoogle Scholar
  18. Gould, E. A., Buckley, A., and Cammack, N., 1985a, Use of biotin streptavidin interaction to improve flavivirus detection by immunofluorescence and ELISA tests, J. of Virol. Methods 11: 41–48.CrossRefGoogle Scholar
  19. Gould, E. A., Buckley, A., Cammack, N., Barrett, A. D. T., Clegg, J. C. S., Ishak, R., and Varma, M. G. R., 1985b, Examination of the immunological relationships between flaviviruses using yellow fever virus monoclonal antibodies, J. Gen. Virol. 66: 1369–1382.PubMedCrossRefGoogle Scholar
  20. Gresikova, M., and Sekeyova, M., 1984, Antigenic relationships among viruses of the tick-borne encephalitis complex as studied by monoclonal antibodies, Acta. Virol. 28: 64–68.PubMedGoogle Scholar
  21. Halstead, S. B., and O’Rourke, E. J., 1977, Dengue viruses and mononuclear phagocytes. I. Infection enhancement by nonneutralizing antibody, J. Exp. Med. 146: 201–217.PubMedCrossRefGoogle Scholar
  22. Halstead, S. B., Chow, J. S., and Marchette, N. J., 1973, Immunological enhancement of dengue virus replication, Nature (London) New Biol. 243: 24–26.Google Scholar
  23. Halstead, S. B., Porterfield, J. S., and O’Rourke, E. J., 1980, Enhancement of dengue virus infection in monocytes by flavivirus antisera, Am. J. Trop. Med. Hyg. 29: 638–642.PubMedGoogle Scholar
  24. Heinz, F. X., Berger, R., Tuma, W., and Kunz, C., 1983a, A topological and functional model of epitopes on the structural glycoprotein of tick-borne encephalitis virus defined by monoclonal antibodies, Virology 126: 525–537.PubMedCrossRefGoogle Scholar
  25. Heinz, F. X., Berger, R., Tuma, W., and Kunz, C., 1983b, Location of immunodominant antigenic determinants on fragments of the tick-borne encephalitis virus glycoprotein: Evidence for two different mechanisms by which antibodies mediate neutralization and hemagglutination inhibition, Virology 130: 485–501.PubMedCrossRefGoogle Scholar
  26. Heinz, F. X., Mandl, C., Berger, R., Tuma, W, and Kunz, C., 1984a, Antibody-induced conformational changes result in enhanced avidity of antibodies to different antigenic sites on the tick-borne encephalitis virus glycoprotein, Virology 133: 25–34.PubMedCrossRefGoogle Scholar
  27. Heinz, F. X., Tuma, W, Guirakhoo, F., Berger, R., and Kunz, C., 1984b, Immunogenicity of tick-borne encephalitis virus glycoprotein fragments: Epitope-specific analysis of the antibody response, J. Gen. Virol. 65: 1921–1929.PubMedCrossRefGoogle Scholar
  28. Henchal, E. A., Gentry, M. K., McCown, J. M., and Brandt, W. E., 1982, Dengue virus-specific and flavivirus group determinants identified with monoclonal antibodies by indirect immunofluorescence, Am. J. Trop. Med. Hyg. 31: 830–836.PubMedGoogle Scholar
  29. Hunt, A. R., and Roehrig, J. T., 1985, Biochemical and biological characteristics of epitopes on the El glycoprotein of western equine encephalitis virus, Virology 142: 334–346.PubMedCrossRefGoogle Scholar
  30. Karabatsos, N., 1975, Antigenic relationships of group A arboviruses by plaque reduction neutralization testing, Am. J. Trop. Med. Hyg. 24: 527–532.PubMedGoogle Scholar
  31. Kauffman, R. S., Noseworthy, J. H. Nepom, J. T., Finberg, R., Fields, B. N., and Greene, M. I., 1983, Cell receptors for the mammalian reovirus. II. Monoclonal anti-idiotypic antibody blocks viral binding to cells, J. Immunol. 131: 2539–2541.PubMedGoogle Scholar
  32. Kimura-Kuroda, J., and Yasui, K., 1983, Topographical analysis of antigenic determinants on envelope glycoprotein V3 (E) of Japanese encephalitis virus, using monoclonal antibodies, J. Virol. 45: 124–132.PubMedGoogle Scholar
  33. Kinney, R. M., Trent, D. W., and France, J. K., 1983, Comparative immunological and biochemical analyses of viruses in the Venezuelan equine encephalitis complex, J. Gen. Virol. 64: 135–147.PubMedCrossRefGoogle Scholar
  34. Kobayashi, Y., Hasegawa, H., Oyama, T., Tamai, T, and Kusaba, T., 1984, Antigenic analysis of Japanese encephalitis virus by using monoclonal antibodies, Infect. Immun. 44: 117–123.PubMedGoogle Scholar
  35. Kuno, G., Gubler, D. J., and Santiago de Weil, N., 1986, Antigen capture ELISA for the identification of Dengue viruses, J. Virol. Methods,in press.Google Scholar
  36. Laemmli, U. K., 1970, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature (London) 277: 680–685.CrossRefGoogle Scholar
  37. Lostrom, M. E., Stone, M. R., Tam, M., Bumette, W. M., Pinter, A., and Nowinski, R. C., 1979, Monoclonal antibodies against murine leukemia viruses: Identification of six antigenic determinants on the p15(E) and gp70 envelope proteins, Virology 98: 336–350.PubMedCrossRefGoogle Scholar
  38. Mathews, J. M., and Roehrig, J. T., 1982, Determination of the protective epitopes on the glycoproteins of Venezuelan equine encephalomyelitis virus by passive transfer of monoclonal antibodies, J. Immunol. 129: 2763–2767.PubMedGoogle Scholar
  39. Mathews, J. M., and Roehrig, J. T., 1984, Elucidation of the topography and determination of the protective epitopes on the E glycoprotein of Saint Louis encephalitis virus by passive transfer with monoclonal antibodies, J. Immunol. 132: 1533–1537.Google Scholar
  40. Mathews, J. H., Roehrig, J. T., and Trent, D. W., 1985, Role of complement and Fc portion if immunoglobulin G in immunity to Venezuelan equine encephalomyelitis virus infection with glycoprotein-specific monoclonal antibodies, J. Virol. 55: 594–600.PubMedGoogle Scholar
  41. Monath, T. P., and Nystrom, R. R., 1984, Detection of yellow fever virus in serum by enzyme immunoassay, Am. J. Trop. Med. Hyg. 33: 151–157.PubMedGoogle Scholar
  42. Monath, T. P., Kinney, R. M., Schlesinger, J. J., Brandriss, M. W., and Bres, P., 1983, Ontogeny of yellow fever 17D vaccine: RNA oligonucleotide fingerprint and monoclonal antibody analyses of vaccine produced world-wide, J. Gen. Virol. 64: 627–637.PubMedCrossRefGoogle Scholar
  43. Monath, T. P., Schlesinger, J. J., Brandriss, M. W., Cropp, C. B., and Prange, W. B. 1984a, Yellow fever monoclonal antibodies: Type-specific and cross-reactive determinants identified by immunofluorescence, Am. J. Trop. Med. Hyg. 33: 695–698.PubMedGoogle Scholar
  44. Monath, T. P., Nystrom, R. R., Bailey, R. E., Calisher, C. H., and Muth, D. J., 1984b, Immunoglubulin M antibody capture enzyme-linked immunosorbent assay for diagnosis of St. Louis encephalitis, J. Clin Microbiol. 20: 784–790.PubMedGoogle Scholar
  45. Monath, T. P., Hill, L. J., Brown, N. V., Cropp, C. B., Schlesinger, J. J., Saluzzo, J. F., and Wands, J. R., 1986, Sensitive and specific monoclonal immunoassay for detecting yellow fever virus in laboratory and clinical specimens, J. Clin. Microbiol.,in press.Google Scholar
  46. Nicolatti, R. A., Briles, D. E., Schroer, J., and Davie, J. M., 1979, Isoelectric focusing of immunoglobulins: Improved methodology, J. Immunol. Methods 33: 101–115.CrossRefGoogle Scholar
  47. Olmstead, R. A., Baric, R. S., Sawyer, B. A., and Johnston, R. E., 1984, Sindbis virus mutants selected for rapid growth in cell culture display attenuated virulence in animals, Science 225: 424–426.CrossRefGoogle Scholar
  48. Pedersen, C. E., and Eddy, E. A., 1974, Separation, isolation, and immunochemical studies of the structural proteins of Venezuelan equine encephalomyelitis virus, J. Virol. 14: 740–744.PubMedGoogle Scholar
  49. Peiris, J. S. M., and Porterfield, J. S., 1979, Antibody-mediated enhancement of flavivirus replication in macrophage cell lines, Nature (London) 282: 509–511.CrossRefGoogle Scholar
  50. Peiris, J. S. M., Porterfield, J. S., and Roehrig, J. T., 1982, Monoclonal antibodies against the flavivirus West Nile, J. Gen. Virol. 58: 283–289.PubMedCrossRefGoogle Scholar
  51. Porterfield, j. S., 1980, Antigenic characteristics and classification of togaviridae, in: The Togaviruses: Biology, Structure, and Replication ( R. W. Schlesinger, ed.), pp. 13–46, Academic Press, New York.Google Scholar
  52. Porterfield, J. S., Casals, J., Chumakov, M. P., Gaidamovich, S. Y., Hannoun, J., Holmes, I. H., Horzinek, M. C., Mussgay, Oker-Blom, N., Russell, P. K., and Trent, D. W., 1978, Togaviridae, Intervirology 9: 129–148.PubMedCrossRefGoogle Scholar
  53. Righi, M., Radaelli, A., Ricciardi, P., Liboi, E., and de Giuli Morghen, C., 1983, Identification by monoclonal antibodies of a new epitope in the glycoprotein complex of Sindbis virus, J. Virol. Methods 6: 203–214.PubMedCrossRefGoogle Scholar
  54. Roehrig, J. T., and Mathews, J. H., 1985, The neutralization site on the E2 of Venezuelan equine encephalomyelitis virus is composed of multiple conformationally stable epitopes, Virology 142: 347–356.PubMedCrossRefGoogle Scholar
  55. Roehrig, J. T., Corser, J. A., and Schlesinger, M. J., 1980, Isolation and characterization of hydridoma cell lines producing monoclonal antibodies against the structural proteins of Sindbis virus, Virology 101: 41–49.PubMedCrossRefGoogle Scholar
  56. Roehrig, J. T., Day, J. W., and Kinney, R. M., 1982a, Antigenic analysis of the surface glycoproteins of a Venezuelan equine encephalomyelitis virus (TC-83) using monoclonal antibodies, Virology 118: 269–278.PubMedCrossRefGoogle Scholar
  57. Roehrig, J. T., Gorski, D., and Schlesinger, M. J., 1982b, Properties of monoclonal antibodies directed against the glycoproteins of Sindbis virus, J. Gen. Virol. 59: 421–425.PubMedCrossRefGoogle Scholar
  58. Roehrig, J. T., Mathews, J. H., and Trent, D.. W., 1983, Identification of epitopes on the E glycoprotein of Saint Louis encephalitis virus using monoclonal antibodies, Virology 128: 118–126.PubMedCrossRefGoogle Scholar
  59. Roehrig, J. T., Hunt, A. R., and Mathews, J. H., 1985, Identification of anti-idiotype antibodies that mimic the neutralization site of Venezuelan equine encephalomyelitis virus, In High-Technology Route to Virus Vaccines, (G. R. Dreesman, J. G. Bronson, and R. C. Kennedy, eds.), American Society for Microbiology, Washington, D. C. pp. 142–153.Google Scholar
  60. Schlesinger, J. J., and Brandriss, M. W., 1983, 17D yellow fever virus infection of P388D1 cells mediated by monoclonal antibodies: Properties of the macrophage Fc receptor, J. Gen. Virol. 64: 1255–1262.Google Scholar
  61. Schlesinger, J. J., Brandriss, M. W., and Monath, T. P., 1983, Monoclonal antibodies distinguish between wild and vaccine strains of yellow fever virus by neutralization, hem-agglutination inhibition, and immune precipitation of the virus envelope protein, Virology 125: 8–17.PubMedCrossRefGoogle Scholar
  62. Schmaljohn, A. L., Johnson, E. D., Dalrymple, J. M., and Cole, G. A., 1983a, Non-neutralizing monoclonal antibodies can prevent lethal alphavirus encephalitis, Nature (London) 297: 70–72.CrossRefGoogle Scholar
  63. Schmaljohn, A. L., Kokubun, J. M., and Cole, G. A., 1983b, Protective monoclonal antibodies define maturational and pH-dependent antigenic changes in Sindbis virus El glycoprotein, Virology 130: 144–154.PubMedCrossRefGoogle Scholar
  64. Stephenson, J. R., Lee, J. M., and Wilton-Smith, P. D., 1984, Antigenic variation among members of the tick-borne encephalitis complex, J. Gen. Virol. 65: 81–89.PubMedCrossRefGoogle Scholar
  65. Towbin, H., Staehelin, T., and Gordon, J., 1979, Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedures and some applications, Proc. Natl. Acad. Sci. U.S.A. 76: 4350–4354.PubMedCrossRefGoogle Scholar
  66. Trent, D. W., 1977, Antigenic characterization of flavivirus structural proteins separated by isoelectric focusing, J. Virol. 22: 608–618.PubMedGoogle Scholar
  67. Trent, D. W., Clewley, J. P., France, J. K., and Bishop, D. H. L., 1979, Immunochemical and oligonucleotide fingerprint analyses of Venezuelan equine encephalomyelitis complex viruses, J. Gen. Virol. 43: 365–381.PubMedCrossRefGoogle Scholar
  68. Voller, A., Bidwell, D., and Bartlett, A., 1976, Microplate enzyme immuno-assay for the immunodiagnosis of virus infections, in: Handbook of Clinical Microbiology ( N. R. Rose and H. Friedman, eds.), pp. 456–462, American Society for Microbiology, Washington, D. C.Google Scholar
  69. Waxham, M. N., and Wolinsky, J. S., 1985, Detailed immunologic analysis of the structural polypeptides of rubella virus using monoclonal antibodies, Virology 143: 153–165.PubMedCrossRefGoogle Scholar
  70. Webster, R. G., and Laver, W. G., 1980, Determination of the number of non-overlapping antigenic areas on Hong Kong (H3N2) influenza virus hemagglutinin with monoclonal antibodies and the selection of variants with potential epidemiological significance, Virology 104: 139–148.PubMedCrossRefGoogle Scholar
  71. Ziemieki, A., and Garoff, H., 1978, Subunit composition of the membrane glycoprotein complex of Semliki Forest virus, J. Mol. Biol. 122: 259–269.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • John T. Roehrig
    • 1
  1. 1.Division of Vector-Borne Viral Diseases, Center for Infectious Diseases, Centers for Disease Control, Public Health ServiceU.S. Department of Health and Human ServicesFort CollinsUSA

Personalised recommendations