Skip to main content

Replication of Alphaviruses in Mosquito Cells

  • Chapter
The Togaviridae and Flaviviridae

Part of the book series: The Viruses ((VIRS))

Abstract

The alphaviruses are members of a group of infectious agents once referred to as “arboviruses” (arthropod-borne viruses). Although alphaviruses are clearly identified as agents of human and animal disease, the term arbovirus recognizes the active roles of invertebrates in the natural life cycle of these viruses. Alphaviruses are perpetuated in the wild, in part, through an interplay between insect and vertebrate hosts and are transmitted to vertebrates by the bite of infected arthropods, usually mosquitos or ticks. The use of the term “insect vector” to describe the invertebrate counterpart implies a reduced importance, or possibly passive role, of the insect in the transmission of these agents to vertebrates. It is very clear today that active replication of alphaviruses in the invertebrate is essential to the perpetuation of the virus in nature. Furthermore, it now appears that the constant participation of the vertebrate host may not be essential for the maintenance of these viruses in the wild. Evidence strongly suggests that alphaviruses (as well as other insect-borne viruses) are transmitted vertically (transovarially) from generation to generation (for a review, see Leake, 1984).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, R H., and Brown, D. T., 1982, Inhibition of Sindbis virus maturation after treatment of infected cells with trypsin, J. Virol. 41: 692–702.

    PubMed  CAS  Google Scholar 

  • Adams, R. H., and Brown, D. T., 1985, BHK cells expressing Sindbis virus induced homologous interference allow the translation of superinfecting virus nonstructural genes, J. Virol. 54: 351–357.

    PubMed  CAS  Google Scholar 

  • Anderson, W. A., and Spielman, A., 1971, Permeability of the ovarian follicle of Aedes aegypti mosquitos, J. Cell Biol. 50: 201–221.

    Article  PubMed  CAS  Google Scholar 

  • Baric, R. S., Carlin, L. J., and Johnston, R. E., 1983a, Requirements for host transcription in the replication of Sindbis virus, J. Virol. 45: 200–250.

    PubMed  CAS  Google Scholar 

  • Baric, R. S., Lineberger, D. W., and Johnston, R. E., 1983b, Reduced synthesis of Sindbis virus negative-strand RNA in cultures treated with host transcription inhibitors, J. Virol. 47: 46–54.

    PubMed  CAS  Google Scholar 

  • Barrett, A. D. T., Cubitt, W. D., and Dimmock, N. J., 1984, Defective interfering particles of Semliki Forest virus are smaller than particles of standard virus, J. Gen. Virol. 65: 2265–2268.

    Article  PubMed  Google Scholar 

  • Brown, D. T., 1980, The assembly of alphaviruses, in: The Togaviruses: Biology, Structure, Replication ( R. W. Schlesinger, ed.), pp. 473–501, Academic Press, New York.

    Google Scholar 

  • Brown, D. T., and Gliedman, J. B., 1973, Morphological variants of Sindbis virus obtained from infected mosquito tissue culture cells, j. Virol. 12: 1535–1539.

    Google Scholar 

  • Cancedda, R., and Schlesinger, M. J., 1974, Formation of Sindbis virus capsid protein in mammalian cell-free extracts programmed with viral RNA, Proc. Natl. Acad. Sci. U.S.A. 71: 1843–1847.

    Article  PubMed  CAS  Google Scholar 

  • Cassell, S., Edwards, J., and Brown, D. T., 1984, The effects of lysosomotropic weak bases on the infection of BHK-21 cells by Sindbis virus, J. Virol. 52: 857–864.

    PubMed  CAS  Google Scholar 

  • Chamberlain, R. W., and Sudia, W. D., 1961, Mechanism of transmission of viruses by mosquitos, Annu. Rev. Entomol. 6: 371–390.

    Article  PubMed  CAS  Google Scholar 

  • Contreras, A., and Carrasco, L., 1981, Selective inhibition of protein synthesis in virus-infected mammalian cells, J. Virol. 29: 114–122.

    Google Scholar 

  • Coombs, K., Mann, E., Edwards, J., and Brown, D. T., 1981, Effects of chloroquine and cytochalasin B on the infection of cells by Sindbis virus and vesicular stomatitis virus, /. Virol. 37: 1060–1065.

    CAS  Google Scholar 

  • Davey, M. W., and Dalgarno, L., 1974, Semliki Forest virus replication in cultured Aedes albopictus cells: Studies on the establishment of persistence, J. Gen. Virol. 24: 453–463.

    Article  PubMed  CAS  Google Scholar 

  • Durbin, R. K., and Stollar, V., 1984, A mutant of Sindbis virus with a host-dependent defect In maturation associated with hyperglycosylation of E2. Virology 135: 331–334.

    Article  PubMed  CAS  Google Scholar 

  • Eagle, H., 1959, Amino acid metabolism in mammalian cell cultures, Science 130: 432–437.

    Article  PubMed  CAS  Google Scholar 

  • Eaton, B. T., 1981, Viral interference and persistence in Sindbis virus infected Aedes albopictus cells, Can. J. Microbiol 27: 563–567.

    Article  PubMed  CAS  Google Scholar 

  • Edwards, J., and Brown, D. T., 1984, Sindbis virus induced fusion of tissue cultured Aedes albopictus (mosquito) cells, Virus Res. 1: 705–711.

    Article  Google Scholar 

  • Edwards, J., Mann, E., and Brown, D. T., 1983, Conformational changes in Sindbis virus envelope proteins accompanying exposure to low pH, J. Virol. 45: 1090–1097.

    PubMed  CAS  Google Scholar 

  • Erwin, C., and Brown, D. T., 1983, Requirement of cell nucleus for Sindbis virus replication in cultured Aedes albopictus (mosquito) cells, J. Virol. 45: 792–799.

    PubMed  CAS  Google Scholar 

  • Garry, R. F., Bishop, J. M., Parker, S., Westbrook, K., Lewis, G., and Waite, M. R. F., 1979, Na and K+ concentrations and the regulation of protein synthesis in Sindbis virus-infected chick cells, Virology 96: 108–120.

    Article  PubMed  CAS  Google Scholar 

  • Gillies, S., and Stollar, V., 1981, Translation of vesicular stomatitis and Sindbis virus mRNAs in cell-free extracts of Aedes albopictus cells, j. Biol. Chem. 256:13, 188–13, 192.

    Google Scholar 

  • Gliedman, J. B., Smith, J. F., and Brown, D. T., 1975, Morphogenesis of Sindbis virus in cultured Aedes albopictus cells, I. Virol. 16: 913–926.

    CAS  Google Scholar 

  • Hardy, J. L., Houk, E. J., Kramer, L. D., and Reeves, W. C., 1983, Intrinsic factors affecting vector competence of mosquitos for arboviruses, Ann u. Rev. Entomol. 28: 229–262.

    Article  CAS  Google Scholar 

  • Helenius, A., Kartenbeck, J., Simons, K., and Fries, E., 1980a, On the entry of Semliki Forest virus into BHK-21 cells, J. Cell Biol. 84: 404–420.

    Article  PubMed  CAS  Google Scholar 

  • Helenius, A., Marsh, M., and White, J., 1980b, The entry of viruses into animal cells, Trends Biochem. Sci. 5: 104–106.

    Article  Google Scholar 

  • Houk, E. J., 1977, Midgut ultrastructure of Culex tarsalis (Diptera: Culicidae) before and after a bloodmeal, Tissue Cell 9 (1): 103–118.

    Article  PubMed  CAS  Google Scholar 

  • Houk, E. J., and Hardy, J. L., 1979, In vivo negative staining of the midgut continuous junction in the mosquito Culex tarsalis (Diptera: Culicidae), Acta. Trop. 36: 267–276.

    PubMed  CAS  Google Scholar 

  • Houk, E. J., Kramer, L. D., Hardy, J. L., and Chiles, R. E., 1985, Western equine encephalomyelitis virus. In vivo infection and morphogenesis in mosquito mesenteronal epithelial cells, Virus Res. 2: 123–138.

    Article  PubMed  CAS  Google Scholar 

  • Howard, L. M., 1962, Studies on the mechanism of infection of the mosquito midgut by Plasmodium gallicaceum, Am. J. Hyg. 75: 287–300.

    PubMed  CAS  Google Scholar 

  • Hsieh, P., and Robbins, P. W., 1984, Regulation of asparagine-linked oligosaccharide processing in Aedes albopictus mosquito cells, J. Biol. Chem. 259: 2375–2382.

    PubMed  CAS  Google Scholar 

  • Igarashi, A., and Stollar, V., 1976, Failure of defective interfering particles of Sindbis virus produced in BHK or chicken cells to affect viral replication in Aedes albopictus cells, J. Virol. 19: 398–408.

    PubMed  CAS  Google Scholar 

  • Igarashi, A., Koo, R., and Stollar, V., 1977, Evolution and properties of Aedes albopictus cell cultures persistently infected with Sindbis virus, Virology 82: 69–83.

    Article  PubMed  CAS  Google Scholar 

  • Johnston, R. E., Wan, K., and Bose, H. R., Jr., 1974, Homologous interference induced by Sindbis virus, J. Virol. 14: 1076–1082.

    PubMed  CAS  Google Scholar 

  • Johnston, R. E., Tovell, D. R., Brown, D. T., and Faulkner, P., 1975, Interfering passages of Sindbis virus: Concomitant appearance of interference, morphological variants and truncated viral RNA, J. Virol. 16: 951–958.

    PubMed  CAS  Google Scholar 

  • King, C.-C., King, M. W., Garry, R. F., Wan, K. M.-M., Ulug, E. T., and Waite, M. R. F., 1979, Effect of incubation time on the generation of defective-interfering particles during undiluted serial passage of Sindbis virus in Aedes albopictus and chick cells, Virology 96: 229–238.

    Article  PubMed  CAS  Google Scholar 

  • Kowal, K. J., and Stollar, V., 1981, Temperature-sensitive host-dependent mutants of Sindbis virus, Virology 114: 140–148.

    Article  PubMed  CAS  Google Scholar 

  • Kramer, L. D., Hardy, J. L., Presser, S. B., and Houk, E. J., 1981, Dissemination barriers for Western equine encephalomyelitis virus in Culex tarsalis infected after ingestion of low viral doses, Am. J. Trop. Med. Hyg. 30 (1): 190–197.

    PubMed  CAS  Google Scholar 

  • Leake, C. J., 1984, Transovarial transmission of arboviruses by mosquitos, in: Vectors in Virus Biology ( M. A. Mayo and K. A. Harrap, eds.), pp. 63–91, Academic Press, London.

    Google Scholar 

  • Luukonen, A., von Bonsdorff, C.-H., and Renkonen, F., 1977, Characterization of Semliki Forest virus grown in mosquito cells: Comparison with the virus from hamster cells, Virology 78: 331–335.

    Article  Google Scholar 

  • Malinoski, F., and Stollar, V., 1980, Inhibition of Sindbis virus replication in Aedes albopictus cells by virazole (ribavirin) and its reversal by actinomycin: A correction, Virology 102: 473–476.

    Article  PubMed  CAS  Google Scholar 

  • Malinoski, F., and Stollar, V., 198la, Inhibitors of IMP dehydrogenase prevent Sindbis virus replication and reduce GTP levels in Aedes albopictus cells, Virology 110: 281–291.

    Google Scholar 

  • Malinoski, F., and Stollar, V., 1981b, Inhibition of Sindbis virus replication by ribavirin: Influence of cultural conditions and of the host cell phenotype, Antiviral Res. 1: 287–299.

    Article  CAS  Google Scholar 

  • Mann, E., Edwards, J., and Brown, D. T., 1983, Polycaryocyte formation mediated by Sindbis virus glycoproteins, J. Virol. 45: 1083–1089.

    PubMed  CAS  Google Scholar 

  • McLintock, J., 1978, Mosquitovirus relationships of American encephalitides, Annu. Rev. Entomol. 23: 17–37.

    Article  PubMed  CAS  Google Scholar 

  • Mento, S. J., and Stollar, V., 1978, Effect of ouabain on Sindbis virus replication in oubainsensitive and oubain-resistant Aedes albopictus cells (Singh), Virology 87: 58–65.

    Article  PubMed  CAS  Google Scholar 

  • Miles, J. A. R., Pillai, J. S., and Maguire, T., 1973, Multiplication of Whataroa virus in mosquitos, J. Med. Entomol. 10: 176–185.

    PubMed  CAS  Google Scholar 

  • Mitsuhashi, J., and Maramorosch, K., 1964, Leafhopper tissue culture: Embryonic, nymphal and imaginal tissues from aseptic insects, Contrib. Boyce Thompson Inst. 22: 435–460.

    Google Scholar 

  • Moore, N. F., Barenholz, Y., and Wagner, R. R., 1976, Microviscosity of togavirus membranes studied by fluorescence depolarization: Influence of envelope proteins and the host cell, J. Virol. 19: 126–135.

    PubMed  CAS  Google Scholar 

  • Newton, S. E., and Dalgarno, L., 1983, Antiviral activity released from Aedes albopictus cells persistently infected with Semliki Forest virus, J. Virol. 47: 652–655.

    PubMed  CAS  Google Scholar 

  • Nozawa, C. M., and Apostolov, K., 1982, Association of the cytopathic effect of Sindbis virus with increased fatty acid saturation, J. Gen. Virol. 59: 219–222.

    Article  PubMed  CAS  Google Scholar 

  • Peleg, J., 1968a, Growth of arboviruses in monolayers from subcultured mosquito embryo cells, Virology 35: 617–619.

    Article  PubMed  CAS  Google Scholar 

  • Peleg, J., 1968b, Growth of arboviruses in primary tissue culture of Aedes aegypti embryos, Am. J. Trop. Med. Hyg. 17: 219–223.

    PubMed  CAS  Google Scholar 

  • Peleg, J., 1969, Inapparent persistent virus infection in continuously grown Aedes aegypti mosquito cells, J. Gen. Virol. 5: 463–471.

    Article  Google Scholar 

  • Raghow, R. S., Davey, M. W., and Dalgarno, L., 1973a, The growth of Semliki Forest virus in cultured mosquito cells: Ultrastructural observations, Arch. Gesamte Virusforsch. 43: 165–168.

    Article  PubMed  CAS  Google Scholar 

  • Raghow, R. S., Grace, T. D. C., Filshie, B. K., Bartly, W., and Dalgarno, L., 1973b, Ross River virus replication in cultured mosquito and mammalian cells: Virus growth and correlated ultrastructural changes, J. Gen. Virol. 21: 109–122.

    Article  PubMed  CAS  Google Scholar 

  • Rehacek, J., 1968, The growth of arboviruses in mosquito cells in vitro, Acta Virol. 12: 241–246.

    PubMed  CAS  Google Scholar 

  • Renz, D., and Brown, D. T., 1976, Characteristics of Sindbis virus temperature-sensitive mutants in cultured BHK-21 and Aedes albopictus (mosquito) cells, J. Virol. 19: 775–781.

    PubMed  CAS  Google Scholar 

  • Riedel, B., and Brown, D. T., 1977, Role of extracellular virus in the maintenance of the persistent infection induced in Aedes albopictus (mosquito) cells by Sindbis virus, j. Virol. 23: 554–561.

    PubMed  CAS  Google Scholar 

  • Riedel, B., and Brown, D. T., 1979, Novel antiviral activity found in the media of Sindbis virus-persistently infected mosquito (Aedes albopictus) cell cultures, J. Virol. 29: 51–60.

    PubMed  CAS  Google Scholar 

  • Sarver, N., and Stollar, V., 1977, Sindbis virus-induced cytopathic effect in clones of Aedes albopictus (Singh) cells, Virology 80: 390–400.

    Article  PubMed  CAS  Google Scholar 

  • Sarver, N., and Stollar, V., 1978, Virazole prevents production of Sindbis virus and virus-induced cytopathic effect in Aedes albopictus cells, Virology 91: 267–282.

    Article  PubMed  CAS  Google Scholar 

  • Schèefers-Borchel, U., Scheefers, H., Edwards, J., and Brown, D. T., 1981, Sindbis virus maturation in cultured mosquito cells is sensitive to actinomycin D, Virology 110: 292–301.

    Article  PubMed  Google Scholar 

  • Shenk, T. E., Koshelnyk, K. A., and Stollar, V., 1974, Temperature-sensitive virus from Aedes albopictus cells chronically infected with Sindbis virus, J. Virol. 13: 439–447.

    PubMed  CAS  Google Scholar 

  • Simizu, B., and Maeda, S., 1981, Growth patterns of temperature-sensitive mutants of Western equine encephalitis virus in cultured Aedes albopictus (mosquito) cells, J. Gen. Virol. 56: 349–361.

    Article  PubMed  CAS  Google Scholar 

  • Simmons, D. T., and Strauss, J. H., 1974, Translation of Sindbis virus 26S RNA and 49S RNA in lysates of rabbit reticulocytes, J. Mol. Biol. 86: 397–409.

    Article  PubMed  CAS  Google Scholar 

  • Singh, K. R. P., 1967, Cell cultures derived from larvae of Aedes albopictus (Skuse) and Aedes aegypti (L.), Curr. Sci. 36: 506–508.

    Google Scholar 

  • Stalder, J., Reigel, F., and Koblet, H., 1983, Defective viral RNAs in Aedes albopictus C6/36 cells persistently infected with Semliki Forest virus, Virology 129: 247–254.

    Article  PubMed  CAS  Google Scholar 

  • Stollar, V., 1980, Togaviruses in cultured arthropod cells, in: The Togaviruses: Biology, Structure, Replication ( R. W. Schlesinger, ed.), pp. 584–621, Academic Press, New York.

    Google Scholar 

  • Stollar, V., and Hardy, J. L., 1984, Host dependent mutants of Sindbis virus whose growth is restricted in cultured Aedes albopictus cells produce normal yields of virus in intact mosquitos, Virology 134: 177–183.

    Article  PubMed  CAS  Google Scholar 

  • Stollar, V., Shenk, T. E., Koo, R., Igarashi, A., and Schlesinger, W., 1975, Observations on Aedes albopictus cell cultures persistently infected with Sindbis virus, Ann. N. Y. Acad. Sci. 266: 214–231.

    Article  PubMed  CAS  Google Scholar 

  • Stollar, V., Stollar, B. D., Koo, R., Harrap, K. A., and Schlesinger, R. W., 1976, Sialic acid contents of Sindbis virus from vertebrate and mosquito cells: Equivalence of biological and immunological viral properties, Virology 69: 104–115.

    Article  PubMed  CAS  Google Scholar 

  • Stollar, V., Harrap, K. A., Thomas, V., and Sarver, N., 1979, Observations related to cytopathic effect in Aedes albopictus cells infected with Sindbis virus, in: Arctic and Tropical Arboviruses ( E. Kurstak, ed.), pp. 277–296. Academic Press, New York.

    Google Scholar 

  • Stones, P. B., 1960, Symposium on the evolution of arbovirus diseases. Trans. R. Soc. Trop. Med. Hyg. 54: 132.

    Google Scholar 

  • Thomas, L. A., 1963, Distribution of the virus of Western equine encephalomyelitis in the mosquito vector Culex tarsalis, Am. J. Hyg. 78: 150–165.

    PubMed  CAS  Google Scholar 

  • Tooker, P., and Kennedy, S. I. T., 1981, Semliki Forest virus multiplication in clones of Aedes albopictus cells, J. Virol. 37: 589–600.

    PubMed  CAS  Google Scholar 

  • Ulug, E. T., and Bose, H. R., Jr., 1985, Effect of tunicamycin on the development of the cytopathic effect in Sindbis virus-infected avian fibroblasts, Virology 143: 546–557.

    Article  PubMed  CAS  Google Scholar 

  • Ulug, E. T., Garry, R. F., Waite, M. R. F., and Bose, H. R., Jr., 1984, Alterations in monovalent cation transport in Sindbis virus-infected chick cells, Virology 132: 118–130.

    Article  PubMed  CAS  Google Scholar 

  • Van Steeg, H., Kaspelaitis, M., Voorma, H. O., and Beene, R., 1984, Infection of neuroblastoma cells by Semliki Forest virus: The interference of viral capsid protein with the binding of host messenger RNAs into initiation complexes is the cause of shut-off of host protein synthesis, Eur. J. Biochem. 138: 473–478.

    Article  PubMed  Google Scholar 

  • Wengler, G., 1980, Effects of alphaviruses on host cell macromolecular synthesis, in: The Togaviruses: Biology, Structure, Replication ( R. W. Schlesinger, ed.), pp. 459–472, Academic Press, New York.

    Google Scholar 

  • Wengler, G., and Wengler, G., 1976, Protein synthesis in BHK-21 cells infected with Semliki Forest virus, J. Virol. 17: 10–19.

    CAS  Google Scholar 

  • White, J., and Helenius, A., 1980, pH dependent fusion between the Semliki Forest virus membrane and liposomes, Proc. Natl. Acad. Sci. U.S.A. 77: 3273–3277.

    Google Scholar 

  • White, J., Kartenbeck, J., and Helenius, A., 1980, Fusion of Semliki Forest virus with the plasma membrane can be induced by low pH, J. Cell Biol. 87: 264–272.

    Article  PubMed  CAS  Google Scholar 

  • Whitfield, S. G., Murphy, F. A., and Sudia, W. D., 1973, St. Louis encephalitis virus: An ultrastructural study of infection in a mosquito vector, Virology 56: 70–87.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Brown, D.T., Condreay, L.D. (1986). Replication of Alphaviruses in Mosquito Cells. In: Schlesinger, S., Schlesinger, M.J. (eds) The Togaviridae and Flaviviridae. The Viruses. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0785-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0785-4_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0787-8

  • Online ISBN: 978-1-4757-0785-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics