Skip to main content

Part of the book series: The Viruses ((VIRS))

Abstract

To replicate, viruses must deliver their genomes into the cytoplasm of a host cell, entailing the transport of large macromolecular assemblies through one or more membrane barriers. The problem is not a trivial one, in view of the large size and polar nature of the viral components to be delivered and the fact that both the cell and viral components must remain intact. It is not yet known how most viruses have solved this dilemma, but in the case of enveloped animal viruses, the overall pathway is becoming increasingly clear. The membranes of enveloped viruses serve as transport vesicles between infected cells and new host cells, and the process depends on well-regulated membrane fission and membrane fusion events. The membrane fission reaction occurs when the virus buds from a membrane of the infected host and the membrane fusion reaction when the virus interacts with a membrane of the recipient cell (Fig. 1). During the voyage between the two cells, the viral envelope serves to protect the nucleocapsid. As shown in Fig. 1, the fusion reaction responsible for releasing the genome into the host cell can occur either at the plasma membrane or in the organelles of the endocytotic pathway. The main advantage of this general mechanism seems to be that the genome and accessory proteins do not at any stage need to undergo a direct transfer through a bilayer membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Birdwell, C. R., and Strauss, J. H., 1974, Distribution of the receptor sites for Sindbis virus on the surface of chicken and BHK cells, J. Virol. 14: 672–678.

    PubMed  CAS  Google Scholar 

  • Bordier, C., 1981, Phase separation of integral membrane proteins in Triton X-114 solution, J. Biol. Chem. 256: 1604–1607.

    Google Scholar 

  • Brand, C., and Skehel, J., 1972, Crystalline antigen from the influenza virus envelope, Nature (London) New Biol. 238: 145–147.

    Article  CAS  Google Scholar 

  • Cassell, S., Edwards, J., and Brown, D. T., 1984, Effects of lysosomotropic weak bases on infection in BHK-21 cells by Sindbis virus, J. Virol. 52: 857–864.

    PubMed  CAS  Google Scholar 

  • Clarke, D. H., and Casals, J., 1958, Techniques for hemagglutination and hemagglutination inhibition with arthropod-borne viruses, Am. J. Trop. Med. Hyg. 7: 561–573.

    Google Scholar 

  • Coombs, K., Mann, E., Edwards, J., and Brown, D. T., 1981, Effects of chloroquine and cytochalasin B on the infection of cells by Sindbis virus and vesicular stomatitis virus, J. Virol. 37: 1060–1065.

    PubMed  CAS  Google Scholar 

  • Dalgarno, L., Rice, C., and Strauss, J., 1983, Ross River virus 26S RNA: Complete nucleotide sequence and deduced sequence of the encoded structural proteins, Virology 129: 170–187.

    Google Scholar 

  • Daniels, R. S., Douglas, A. R., Skehel, J. J., and Wiley, D. C., 1983, Analysis of the antigenicity of influenza hemagglutinin at the pH optimum for virus-mediated membrane fusion, J. Gen. Virol. 64: 1657–1662.

    Google Scholar 

  • Daniels, R. S., Downie, J. C., Hay, A. J., Knossow, M., Skehel, J. J., Wang, M. L., and Wiley, D. C., 1985, Fusion mutants of the influenza virus haemagglutinin glycoprotein, Cell 40: 431–439.

    Article  PubMed  CAS  Google Scholar 

  • De Duve, C., de Barsy, T., Poole, B., Trouet, A., Tulkens, P., and van Hoof, F., 1974, Lysosomotropic agents, Biochem. Pharmacol. 23: 2495–2531.

    Google Scholar 

  • Dimmock, N. J., 1982, Initial stages in infection with animal viruses, J. Gen. Virol. 59: 122.

    Google Scholar 

  • Doms, R. W., Helenius, A., and White, J., 1985, Membrane fusion activity of the influenza virus hemagglutinin: The low pH-induced conformational change, J. Biol. Chem. 260: 2973–2981.

    Google Scholar 

  • Dunn, W. A., Hubbard, A. L., and Aronson, N. N., 1979, Low temperature selectively inhibits fusion between pinocytic vesicles and lysosomes during heterophagy of 125I-asialofetuin by the perfused rat liver, J. Biol. Chem. 255: 5971–5978.

    Google Scholar 

  • Eaton, M. D., and Scala, A. R., 1961, Inhibitory effect of glutamine and ammonia on replication of influenza virus in ascites tumor cells, Virology 13: 300–307.

    Article  PubMed  CAS  Google Scholar 

  • Edwards, J., Mann, E., and Brown, D. T., 1983, Conformational changes in Sindbis virus envelope proteins accompanying exposure to low pH, J. Virol. 45: 1090–1097.

    PubMed  CAS  Google Scholar 

  • Fan, D. P., and Sefton, B. M., 1978, The entry into host cells of Sindbis virus, vesicular stomatitis virus and Sendai virus, Cell 15: 985–992.

    Article  PubMed  CAS  Google Scholar 

  • Fries, E., and Helenius, A., 1979, Binding of Semliki Forest virus and its isolated glycoproteins to cells, Eur. J. Biochem. 97: 213–220.

    Google Scholar 

  • Gallaher, W. R., and Howe, C., 1976, Identification of receptors for animal viruses, Immunol. Commun. 5 (6): 535–552.

    CAS  Google Scholar 

  • Galloway, C. J., Dean, G. E., Marsh, M., Rudnick, G., and Meliman, I., 1983, Acidification of macrophage and fibroblast endocytic vesicles in vitro, Proc. Natl. Acad. Sci. U.S.A. 80: 3334–3338.

    Google Scholar 

  • Garoff, H., Frischauf, A.-M., Simons, K., Lehrach, H.,, and Delius, H., 1980, Nucleotide sequence for cDNA coding of Semliki Forest virus membrane glycoproteins, Nature (London) 288: 236–241.

    CAS  Google Scholar 

  • Gething, M.-J., Doms, R. W., York, D., and White, J., 1986, Studies on the mechanism of membrane fusion: Site-specific mutagenesis of the hemagglutinin of influenza virus, J. Cell. Biol. (in press).

    Google Scholar 

  • Glickman, J., Croen, K., Kelly, S., and Al-Awqati, Q., 1983, Golgi membranes contain an electrogenic H+ pump parallel to a chloride conductance, J. Cell Biol. 97: 1303–1308.

    Article  PubMed  CAS  Google Scholar 

  • Goldstein, J. L., Anderson, R. G., and Brown, M. S., 1979, Coated pits, coated vesicles and receptor-mediated endocytosis, Nature (London) 279: 679–685.

    Article  CAS  Google Scholar 

  • Gonzalez-Noriega, A., Grubb, J. H., Talkad, V., and Sly, W. S., 1980, Chloroquine inhibits lysosomal enzyme pinocytosis and enhances lysosomal enzyme secretion by impairing receptor recycling, J. Cell Biol. 85: 839–852.

    Article  PubMed  CAS  Google Scholar 

  • Hahon, N., and Cooke, K. O., 1967, Primary virus—cell interactions in the immunofluorescence assay of Venezuelan equine encephalomyelitis virus, J. Virol. 1 (2): 317–326.

    PubMed  CAS  Google Scholar 

  • Helenius, A., 1984, Semliki Forest virus penetration from endosomes: A morphological study, Biol. Cell. 51: 181–186.

    Google Scholar 

  • Helenius, A., Morrein, B., Fries, E., Simons, K., Robinson, P., Schirrmacher, V., Terhorst, C., and Strominger, J. L., 1978, Human (HLA-A and -B) and murine ( H2-K and -D) histocompatibility antigens are cell surface receptors for Semliki Forest virus, Proc. Natl. Acad. Sci. U.S.A. 75: 3846–3850.

    Google Scholar 

  • Helenius, A., Kartenbeck, J., Simons K., and Fries, E., 1980a, On the entry of Semliki Forest virus into BHK-21 cells, J. Cell Biol. 84: 404–420.

    Article  PubMed  CAS  Google Scholar 

  • Helenius, A., Marsh, M., and White, J., 1980b, The entry of viruses into animal cells, Trends Biochem. Sci. 5: 104–106.

    Google Scholar 

  • Helenius, A., Marsh, M., and White, J., 1980c, Virus entry into animal cells, in: Leukaemias, Lymphomas and Papillomas: Comparative Aspects, (P. A. Bachmann, ed.), Munich Symposia on Microbiology, pp. 57–63, Taylor and Francis, London.

    Google Scholar 

  • Helenius, A., Marsh, M., and White, J., 1982, Inhibition of Semliki Forest virus penetration by lysosomotropic weak bases, J. Gen. Virol. 58: 47–61.

    Google Scholar 

  • Helenius, A., Meliman, I., Wall, D., and Hubbard, A., 1983, Endosomes, Trends Biochem. Sci. 8: 245–250.

    Google Scholar 

  • Helenius, A., Kielian, M., Wellsteed, J., Mellman, I., and Rudnick, G., 1985, Effects of monovalent cations on Semliki forest virus entry into BHK-21 cells, J. Biol. Chem. 260: 5691–5697.

    Google Scholar 

  • Henning, R., Plattner, H., and Stoffel, W., 1973, Nature and localization of acidic groups on lysosomal membranes, Biochim. Biophys. Acta 330: 61–75.

    Google Scholar 

  • Hilfenhaus, J., 1976, Propagation of Semliki Forest virus in various human lymphoblastoid cell lines, J. Gen. Virol. 33: 539–542.

    Google Scholar 

  • Jensen, E. M., Force, E. E., and Unger, J. B., 1961, Inhibitory effect of ammonium ions on influenza virus in tissue culture, Proc. Soc. Exp. Biol. Med. 107: 447–451.

    Google Scholar 

  • Johnson, D. C., and Schlesinger, M. J., 1980, Vesicular stomatitis virus and Sindbis virus glycoprotein transport to the cell surface is inhibited by ionophores, Virology 103: 407424.

    Google Scholar 

  • Johnston, R. E., and Faulkner, P., 1978, Reversible inhibition of Sindbis virus penetration in hypertonic medium, J. Virol. 25: 436–438.

    PubMed  CAS  Google Scholar 

  • Kääriäinen, L., Hashimoto, K., Saraste, J., Virtanen, I., and Pentinen, K., 1980, Monensin and FCCP inhibit the intracellular transport of alphavirus membrane glycoproteins, J. Cell Biol. 87: 783–791.

    Article  PubMed  Google Scholar 

  • Kielian, M. C., and Helenius, A., 1984, Role of cholesterol in fusion of Semliki forest virus with membranes, J. Virol. 52: 281–283.

    PubMed  CAS  Google Scholar 

  • Kielian, M. C., and Helenius, A., 1985, pH-induced alterations in the fusogenic spike protein of Semliki Forest virus, J. Cell Biol. 101: 2284–2291.

    Google Scholar 

  • Kielian, M., Keränen, S., Kääriäinen, L., and Helenius, A., 1984, Membrane fusion mutants of Semliki Forest virus, J. Cell Biol. 98: 139–145.

    Article  PubMed  CAS  Google Scholar 

  • Kielian, M., Marsh, M., and Helenius, A., 1986, Endosome acidification detected by virus fusion and fusion activation (in prep).

    Google Scholar 

  • Kondor-Koch, C., Burke, B., and Garoff, H., 1983, Expression of Semliki Forest virus proteins from cloned cDNA. I. The fusion activity of the spike glycoprotein, J. Cell Biol. 97: 644651

    Google Scholar 

  • Lenard, J., and Miller, D. K., 1981, pH-dependent hemolysis by influenza, Semliki Forest virus, and Sendai virus, Virology 110: 479–482.

    Google Scholar 

  • Lenard, J., and Miller, D., 1982, Uncoating of enveloped viruses, Cell 28: 5–6.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, V., Green, S. A., Marsh, M., Vihko, P., Helenius, A., and Mellman, I., 1985, Glycoproteins of the lysosomal membrane J. Cell Biol. 100: 1839–1847.

    Article  PubMed  CAS  Google Scholar 

  • Lonberg-Holm, K., and Philipson, L., 1974, Early interactions betwen animal viruses and cells, in: Monographs in Virology Vol. 9 ( J. L. Melnick, ed.), pp. 1–148, S. Karger, Basel.

    Google Scholar 

  • Maeda, T., and Ohnishi, S., 1980, Activation of influenza virus by acidic media causes hemolysis and fusion of erythrocytes, FEBS Lett. 122: 283–287.

    Article  PubMed  CAS  Google Scholar 

  • Mann, E., Edwards, J., and Brown, D. T., 1983, Polycaryocyte formation mediated by Sindbis virus glycoproteins, J. Virol. 45: 1083–1089.

    PubMed  CAS  Google Scholar 

  • Marker, S. C., Connelly, D., and Jahrling, P. B., 1977, Receptor interaction between Eastern equine encephalitis virus and chicken embryo fibroblasts, J. Virol. 21 (3): 981–985.

    PubMed  CAS  Google Scholar 

  • Marsh, M., 1984, The entry of enveloped viruses into cells by endocytosis, Biochem. J. 218: 1–10.

    Google Scholar 

  • Marsh, M., and Helenius, A., 1980, Adsorptive endocytosis of Semliki Forest virus, J. Mol. Biol. 142: 439–454.

    Google Scholar 

  • Marsh, M., Wellsteed, J., Kern, H., Harms, E., and Helenius, A., 1982, Monensin inhibits Semliki Forest virus penetration into baby hamster kidney (BHK-21) cells, Proc. Natl. Acad. Sci. U.S.A. 79: 5297–5301.

    Google Scholar 

  • Marsh, M., Bolzau, E., and Helenius, A., 1983a, Penetration of Semliki Forest virus from acidic prelysosomal vacuoles, Cell 32: 931–940.

    Article  PubMed  CAS  Google Scholar 

  • Marsh, M., Bolzau, E., White, J,. and Helenius, A., 1983b, Interactions of Semliki Forest virus spike glycoprotein rosettes and vesicles with cultured cells, J. Cell Biol. 96: 455461.

    Google Scholar 

  • Massen, J. A., and Terhorst, C., 1981, Identification of a cell-surface protein involved in the binding site of Sindbis virus on human lymphoblastic cell lines using a heterobifunctional cross-linker, Eur. J. Biochem. 115: 153–158.

    Google Scholar 

  • Matlin, K., Reggio, H., Helenius, A., and Simons, K., 1981, The infective entry of influenza virus into MDCK-cells, J. Cell Biol. 91: 601–613.

    Article  PubMed  CAS  Google Scholar 

  • Matlin, K., Reggio, H., Simons, K., and Helenius, A., 1982, The pathway of vesicular stomatitis entry leading to infection, j. Mol. Biol. 156: 609–631.

    Google Scholar 

  • Maxfield, F. R., 1982, Weak bases and ionophores rapidly and reversibly raise the pH of endocytic vesicles in cultured mouse fibroblasts, J. Cell Biol. 95: 676–681.

    Article  PubMed  CAS  Google Scholar 

  • Meager, A., and Hughes, R. C., 1977, Virus receptors, in: Receptors and Recognition, Series A, Vol. 4 ( P. Cuatrecasas and M. F. Greaves, eds.), pp. 143–195, Chapman and Hall, London.

    Google Scholar 

  • Merion, M., Schlesinger, P., Brooks, R. M., Moehring, J. M., Moehring, T. J., and Sly, W. S., 1983, Defective acidification of endosomes in Chinese hamster ovary cell mutants “cross-resistant” to toxins and viruses, Proc. Natl. Acad. Sci. U.S.A. 80: 5315–5319.

    Google Scholar 

  • Miller, D. K., and Lenard, J., 1980, Inhibition of vesicular stomatitis virus infection by spike glycoprotein, J. Cell Biol. 84: 430–437.

    Article  PubMed  CAS  Google Scholar 

  • Miller, D. K., and Lenard, J., 1981, Antihistaminics, local anesthetics and other amines as antiviral agents, Proc. Natl. Acad. Sci. U.S.A. 78: 3605–3609.

    Google Scholar 

  • Mooney, J. J., Dalrymple, J. M., Alving, C. R., and Russell, P. K., 1975, Interaction of Sindbis virus with liposomal model membranes, J. Virol. 15: 225–231.

    PubMed  CAS  Google Scholar 

  • Murphy, R. F., Powers, S., and Cantor, C. R., 1984, Endosome pH measured in single cells by dual fluorescence flow cytometry: Rapid acidification of insulin to pH 6, J. Cell Biol. 98: 1757–1762.

    Article  PubMed  CAS  Google Scholar 

  • Ohkuma, S., and Poole, B., 1978, Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents, Proc. Natl. Acad. Sci. U.S.A. 75: 3327–3331.

    Google Scholar 

  • Ohkuma, S., and Poole, B., 1981, Cytoplasmic vacuolation of mouse peritoneal macrophages and the uptake into lysosomes of weakly basic substances, J. Cell Biol. 90: 656–664.

    Article  PubMed  CAS  Google Scholar 

  • Oldstone, M. B. A., Tishon, A., Dutko, F., Kennedy, S. I. T., Holland, J. J., and Lampert, P. W., 1980, Does the major histocompatibility complex serve as a specific receptor for Semliki Forest virus ?, J. Virol. 34: 256–265.

    PubMed  CAS  Google Scholar 

  • Pastan, I., and Willingham, M. C., 1983, Receptor-mediated endocytosis: Coated pits, receptosomes and the Golgi, Trends Biochem. Sci. 8: 250–254.

    Google Scholar 

  • Poole, B., and Ohkuma, S., 1981, Effect of weak bases on the intralysosomal pH in mouse peritoneal macrophages, J. Cell Biol. 90: 665–669.

    Article  PubMed  CAS  Google Scholar 

  • Redmond, S., Peters, G., and Dickson, C., 1984, Mouse mammary tumor virus can mediate cell fusion at reduced pH, Virology 133: 393–402.

    Article  PubMed  CAS  Google Scholar 

  • Rice, C., and Strauss, J., 1981, Nucleotide sequence of the 26S mRNA of Sindbis virus and deduced sequence of the encoded virus structural proteins, Proc. Natl. Acad. Sci. U.S.A. 78: 2062–2066.

    Google Scholar 

  • Robbins, A. R., Oliver, C., Bateman, J. L., Krag, S. S., Galloway, C. J., and Mellman, I., 1984, A single mutation in Chinese hamster ovary cells impairs both Golgi and endosomal functions, J. Cell Biol. 99: 1296–1308.

    Article  PubMed  CAS  Google Scholar 

  • Rudnick, G., 1985, Acidification of intracellular organelles: Mechanism and function, in: Physiology of Membrane Disorders ( T. Andreoli, D. D. Fanestil, J. F. Hoffman, and S. G. Schultz, eds.), pp. 409–422, Plenum Press, New York.

    Google Scholar 

  • Silverstein, S. C., Steinman, R. M., and Cohn, Z. A., 1977, Endocytosis, Annu. Rev. Biochem. 46: 669–722.

    Google Scholar 

  • Skehel, J., Bayley, P., Brown, E., Martin, S., Waterfield, M., White J., Wilson, I., and Wiley, D., 1982, Changes in the conformation of influenza virus hemagglutinin at the pH optimum of virus-mediated membrane fusion, Proc. Natl. Acad. Sci. U.S.A. 79: 968–972.

    Google Scholar 

  • Smith, A. L., and Tignor, G. H., 1980, Host cell receptors for two strains of Sindbis virus, Arch. Virol. 66 (1): 11–26.

    CAS  Google Scholar 

  • Söderlund, H., Kääriainen, L., Von Bonsdorff, C.-H., and Weckstein, P., 1972, Properties of Semliki Forest virus nucleocapsid II: An irreversible contraction by acid pH, Virology 47: 753–760.

    Google Scholar 

  • Steinman, R. M., Mellman, I. S., Muller, W. A., and Cohn, Z. A., 1983, Endocytosis and the recycling of plasma membrane, J. Cell Biol. 96: 1–27.

    Article  PubMed  CAS  Google Scholar 

  • Talbot, P. J., and Vance, D. E., 1980, Sindbis virus infects BHK-cells via a lysosomal route, Can. J. Biochem. 58: 1131–1137.

    Google Scholar 

  • Tanasugam, L., McNeil, P., Reynolds, G. T., and Taylor, D. L., 1984, Microspectrofluorometry by digital image processing: Measurement of cytoplasmic pH, J. Cell Biol. 98: 717–724.

    Google Scholar 

  • Tycko, B., and Maxfield, F. R., 1982, Rapid acidification of endocytic vesicles containing a2-macroglobulin, Cell 28: 643–651.

    Article  PubMed  CAS  Google Scholar 

  • Väänanen, P., and Kääriäinen, L., 1979, Hemolysis by two alphaviruses: Semliki Forest virus and Sindbis virus, J. Gen. Virol. 43: 593–601.

    Google Scholar 

  • Väänanen, P., and Kääriäinen, L., 1980, Fusion and haemolysis of erythrocytes caused by three togaviruses: Semliki Forest, Sindbis and rubella, J. Gen. Virol. 46: 467–475.

    Google Scholar 

  • Väänanen, P., Gahmberg, C. G., and Kääriäinen, L., 1981, Fusion of Semliki Forest virus with red cell membranes, Virology 110: 366–374.

    Article  PubMed  Google Scholar 

  • Webster, R. G., Brown, L. E., and Jackson, D. C., 1983, Changes in the antigenicity of the hemagglutinin molecule of H3 influenza virus at acidic pH, Virology 126: 587–599.

    Article  PubMed  CAS  Google Scholar 

  • White, J., and Helenius, A., 1980, pH-dependent fusion between the Semliki Forest virus membrane and liposomes, Proc. Natl. Acad. Sci. U.S.A. 77: 3273–3277.

    Google Scholar 

  • White, J., Kartenbeck, J., and Helenius, A., 1980, Fusion of Semliki Forest virus with the plasma membrane can be induced by low pH, J. Cell Biol. 87: 264–272.

    Article  PubMed  CAS  Google Scholar 

  • White, J., Matlin, K., and Helenius, A., 1981, Cell fusion by Semliki Forest, influenza and vesicular stomatitis virus, J. Cell Biol. 89: 674–679.

    Article  PubMed  CAS  Google Scholar 

  • White, J., Kielian, M., and Helenius, A., 1983, Membrane fusion proteins of enveloped animal viruses, Q. Rev. Biophys. 16: 151–195.

    Google Scholar 

  • Wibo, M., and Poole, B., 1974, Protein degradation in cultured cells. II. The uptake of chlooquine by rat fibroblasts and the inhibition of cellular protein degradation and cathepsin B1, J. Cell Biol. 63: 430–440.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, I., Skehel, J., and Wiley, D., 1981, Structure of the hemagglutinin membrane glycoprotein of influenza virus at 3 A resolution, Nature (London) 289: 366–373.

    Article  CAS  Google Scholar 

  • Yewdell, J. W., Gerhard, W., and Bachi, T., 1983, Monoclonal anti-hemagglutinin antibodies detect irreversible antigenic alterations that coincide with the acid activation of influenza virus A/PR/834-mediated hemolysis, J. Virol. 48: 239–248.

    PubMed  CAS  Google Scholar 

  • Yoshimura, A., and Ohnishi, S.-I., 1984, Uncoating of influenza virus in endosomes, J. Virol. 51: 497–504.

    PubMed  CAS  Google Scholar 

  • Yoshimura, A., Kuroda, K., Yamashina, S., Maeda, T., and Ohnishi, S.-I., 1982, Infectious cell entry mechanism of influenza virus, J. Virol. 43: 284–293.

    PubMed  CAS  Google Scholar 

  • Young, J. D.-E., Young, G. P. H., Cohn, Z. A., and Lenard, J., 1983, Interaction of enveloped viruses with planar bilayer membranes: Observations of Sendai, influenza, vesicular stomatitis and Semliki Forest viruses, Virology 128: 186.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Kielian, M., Helenius, A. (1986). Entry of Alphaviruses. In: Schlesinger, S., Schlesinger, M.J. (eds) The Togaviridae and Flaviviridae. The Viruses. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0785-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0785-4_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0787-8

  • Online ISBN: 978-1-4757-0785-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics