Entry of Alphaviruses

  • Margaret Kielian
  • Ari Helenius
Part of the The Viruses book series (VIRS)


To replicate, viruses must deliver their genomes into the cytoplasm of a host cell, entailing the transport of large macromolecular assemblies through one or more membrane barriers. The problem is not a trivial one, in view of the large size and polar nature of the viral components to be delivered and the fact that both the cell and viral components must remain intact. It is not yet known how most viruses have solved this dilemma, but in the case of enveloped animal viruses, the overall pathway is becoming increasingly clear. The membranes of enveloped viruses serve as transport vesicles between infected cells and new host cells, and the process depends on well-regulated membrane fission and membrane fusion events. The membrane fission reaction occurs when the virus buds from a membrane of the infected host and the membrane fusion reaction when the virus interacts with a membrane of the recipient cell (Fig. 1). During the voyage between the two cells, the viral envelope serves to protect the nucleocapsid. As shown in Fig. 1, the fusion reaction responsible for releasing the genome into the host cell can occur either at the plasma membrane or in the organelles of the endocytotic pathway. The main advantage of this general mechanism seems to be that the genome and accessory proteins do not at any stage need to undergo a direct transfer through a bilayer membrane.


Influenza Virus Membrane Fusion Vesicular Stomatitis Virus Coated Vesicle Semliki Forest Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Birdwell, C. R., and Strauss, J. H., 1974, Distribution of the receptor sites for Sindbis virus on the surface of chicken and BHK cells, J. Virol. 14: 672–678.PubMedGoogle Scholar
  2. Bordier, C., 1981, Phase separation of integral membrane proteins in Triton X-114 solution, J. Biol. Chem. 256: 1604–1607.Google Scholar
  3. Brand, C., and Skehel, J., 1972, Crystalline antigen from the influenza virus envelope, Nature (London) New Biol. 238: 145–147.CrossRefGoogle Scholar
  4. Cassell, S., Edwards, J., and Brown, D. T., 1984, Effects of lysosomotropic weak bases on infection in BHK-21 cells by Sindbis virus, J. Virol. 52: 857–864.PubMedGoogle Scholar
  5. Clarke, D. H., and Casals, J., 1958, Techniques for hemagglutination and hemagglutination inhibition with arthropod-borne viruses, Am. J. Trop. Med. Hyg. 7: 561–573.Google Scholar
  6. Coombs, K., Mann, E., Edwards, J., and Brown, D. T., 1981, Effects of chloroquine and cytochalasin B on the infection of cells by Sindbis virus and vesicular stomatitis virus, J. Virol. 37: 1060–1065.PubMedGoogle Scholar
  7. Dalgarno, L., Rice, C., and Strauss, J., 1983, Ross River virus 26S RNA: Complete nucleotide sequence and deduced sequence of the encoded structural proteins, Virology 129: 170–187.Google Scholar
  8. Daniels, R. S., Douglas, A. R., Skehel, J. J., and Wiley, D. C., 1983, Analysis of the antigenicity of influenza hemagglutinin at the pH optimum for virus-mediated membrane fusion, J. Gen. Virol. 64: 1657–1662.Google Scholar
  9. Daniels, R. S., Downie, J. C., Hay, A. J., Knossow, M., Skehel, J. J., Wang, M. L., and Wiley, D. C., 1985, Fusion mutants of the influenza virus haemagglutinin glycoprotein, Cell 40: 431–439.PubMedCrossRefGoogle Scholar
  10. De Duve, C., de Barsy, T., Poole, B., Trouet, A., Tulkens, P., and van Hoof, F., 1974, Lysosomotropic agents, Biochem. Pharmacol. 23: 2495–2531.Google Scholar
  11. Dimmock, N. J., 1982, Initial stages in infection with animal viruses, J. Gen. Virol. 59: 122.Google Scholar
  12. Doms, R. W., Helenius, A., and White, J., 1985, Membrane fusion activity of the influenza virus hemagglutinin: The low pH-induced conformational change, J. Biol. Chem. 260: 2973–2981.Google Scholar
  13. Dunn, W. A., Hubbard, A. L., and Aronson, N. N., 1979, Low temperature selectively inhibits fusion between pinocytic vesicles and lysosomes during heterophagy of 125I-asialofetuin by the perfused rat liver, J. Biol. Chem. 255: 5971–5978.Google Scholar
  14. Eaton, M. D., and Scala, A. R., 1961, Inhibitory effect of glutamine and ammonia on replication of influenza virus in ascites tumor cells, Virology 13: 300–307.PubMedCrossRefGoogle Scholar
  15. Edwards, J., Mann, E., and Brown, D. T., 1983, Conformational changes in Sindbis virus envelope proteins accompanying exposure to low pH, J. Virol. 45: 1090–1097.PubMedGoogle Scholar
  16. Fan, D. P., and Sefton, B. M., 1978, The entry into host cells of Sindbis virus, vesicular stomatitis virus and Sendai virus, Cell 15: 985–992.PubMedCrossRefGoogle Scholar
  17. Fries, E., and Helenius, A., 1979, Binding of Semliki Forest virus and its isolated glycoproteins to cells, Eur. J. Biochem. 97: 213–220.Google Scholar
  18. Gallaher, W. R., and Howe, C., 1976, Identification of receptors for animal viruses, Immunol. Commun. 5 (6): 535–552.Google Scholar
  19. Galloway, C. J., Dean, G. E., Marsh, M., Rudnick, G., and Meliman, I., 1983, Acidification of macrophage and fibroblast endocytic vesicles in vitro, Proc. Natl. Acad. Sci. U.S.A. 80: 3334–3338.Google Scholar
  20. Garoff, H., Frischauf, A.-M., Simons, K., Lehrach, H.,, and Delius, H., 1980, Nucleotide sequence for cDNA coding of Semliki Forest virus membrane glycoproteins, Nature (London) 288: 236–241.Google Scholar
  21. Gething, M.-J., Doms, R. W., York, D., and White, J., 1986, Studies on the mechanism of membrane fusion: Site-specific mutagenesis of the hemagglutinin of influenza virus, J. Cell. Biol. (in press).Google Scholar
  22. Glickman, J., Croen, K., Kelly, S., and Al-Awqati, Q., 1983, Golgi membranes contain an electrogenic H+ pump parallel to a chloride conductance, J. Cell Biol. 97: 1303–1308.PubMedCrossRefGoogle Scholar
  23. Goldstein, J. L., Anderson, R. G., and Brown, M. S., 1979, Coated pits, coated vesicles and receptor-mediated endocytosis, Nature (London) 279: 679–685.CrossRefGoogle Scholar
  24. Gonzalez-Noriega, A., Grubb, J. H., Talkad, V., and Sly, W. S., 1980, Chloroquine inhibits lysosomal enzyme pinocytosis and enhances lysosomal enzyme secretion by impairing receptor recycling, J. Cell Biol. 85: 839–852.PubMedCrossRefGoogle Scholar
  25. Hahon, N., and Cooke, K. O., 1967, Primary virus—cell interactions in the immunofluorescence assay of Venezuelan equine encephalomyelitis virus, J. Virol. 1 (2): 317–326.PubMedGoogle Scholar
  26. Helenius, A., 1984, Semliki Forest virus penetration from endosomes: A morphological study, Biol. Cell. 51: 181–186.Google Scholar
  27. Helenius, A., Morrein, B., Fries, E., Simons, K., Robinson, P., Schirrmacher, V., Terhorst, C., and Strominger, J. L., 1978, Human (HLA-A and -B) and murine ( H2-K and -D) histocompatibility antigens are cell surface receptors for Semliki Forest virus, Proc. Natl. Acad. Sci. U.S.A. 75: 3846–3850.Google Scholar
  28. Helenius, A., Kartenbeck, J., Simons K., and Fries, E., 1980a, On the entry of Semliki Forest virus into BHK-21 cells, J. Cell Biol. 84: 404–420.PubMedCrossRefGoogle Scholar
  29. Helenius, A., Marsh, M., and White, J., 1980b, The entry of viruses into animal cells, Trends Biochem. Sci. 5: 104–106.Google Scholar
  30. Helenius, A., Marsh, M., and White, J., 1980c, Virus entry into animal cells, in: Leukaemias, Lymphomas and Papillomas: Comparative Aspects, (P. A. Bachmann, ed.), Munich Symposia on Microbiology, pp. 57–63, Taylor and Francis, London.Google Scholar
  31. Helenius, A., Marsh, M., and White, J., 1982, Inhibition of Semliki Forest virus penetration by lysosomotropic weak bases, J. Gen. Virol. 58: 47–61.Google Scholar
  32. Helenius, A., Meliman, I., Wall, D., and Hubbard, A., 1983, Endosomes, Trends Biochem. Sci. 8: 245–250.Google Scholar
  33. Helenius, A., Kielian, M., Wellsteed, J., Mellman, I., and Rudnick, G., 1985, Effects of monovalent cations on Semliki forest virus entry into BHK-21 cells, J. Biol. Chem. 260: 5691–5697.Google Scholar
  34. Henning, R., Plattner, H., and Stoffel, W., 1973, Nature and localization of acidic groups on lysosomal membranes, Biochim. Biophys. Acta 330: 61–75.Google Scholar
  35. Hilfenhaus, J., 1976, Propagation of Semliki Forest virus in various human lymphoblastoid cell lines, J. Gen. Virol. 33: 539–542.Google Scholar
  36. Jensen, E. M., Force, E. E., and Unger, J. B., 1961, Inhibitory effect of ammonium ions on influenza virus in tissue culture, Proc. Soc. Exp. Biol. Med. 107: 447–451.Google Scholar
  37. Johnson, D. C., and Schlesinger, M. J., 1980, Vesicular stomatitis virus and Sindbis virus glycoprotein transport to the cell surface is inhibited by ionophores, Virology 103: 407424.Google Scholar
  38. Johnston, R. E., and Faulkner, P., 1978, Reversible inhibition of Sindbis virus penetration in hypertonic medium, J. Virol. 25: 436–438.PubMedGoogle Scholar
  39. Kääriäinen, L., Hashimoto, K., Saraste, J., Virtanen, I., and Pentinen, K., 1980, Monensin and FCCP inhibit the intracellular transport of alphavirus membrane glycoproteins, J. Cell Biol. 87: 783–791.PubMedCrossRefGoogle Scholar
  40. Kielian, M. C., and Helenius, A., 1984, Role of cholesterol in fusion of Semliki forest virus with membranes, J. Virol. 52: 281–283.PubMedGoogle Scholar
  41. Kielian, M. C., and Helenius, A., 1985, pH-induced alterations in the fusogenic spike protein of Semliki Forest virus, J. Cell Biol. 101: 2284–2291.Google Scholar
  42. Kielian, M., Keränen, S., Kääriäinen, L., and Helenius, A., 1984, Membrane fusion mutants of Semliki Forest virus, J. Cell Biol. 98: 139–145.PubMedCrossRefGoogle Scholar
  43. Kielian, M., Marsh, M., and Helenius, A., 1986, Endosome acidification detected by virus fusion and fusion activation (in prep).Google Scholar
  44. Kondor-Koch, C., Burke, B., and Garoff, H., 1983, Expression of Semliki Forest virus proteins from cloned cDNA. I. The fusion activity of the spike glycoprotein, J. Cell Biol. 97: 644651Google Scholar
  45. Lenard, J., and Miller, D. K., 1981, pH-dependent hemolysis by influenza, Semliki Forest virus, and Sendai virus, Virology 110: 479–482.Google Scholar
  46. Lenard, J., and Miller, D., 1982, Uncoating of enveloped viruses, Cell 28: 5–6.PubMedCrossRefGoogle Scholar
  47. Lewis, V., Green, S. A., Marsh, M., Vihko, P., Helenius, A., and Mellman, I., 1985, Glycoproteins of the lysosomal membrane J. Cell Biol. 100: 1839–1847.PubMedCrossRefGoogle Scholar
  48. Lonberg-Holm, K., and Philipson, L., 1974, Early interactions betwen animal viruses and cells, in: Monographs in Virology Vol. 9 ( J. L. Melnick, ed.), pp. 1–148, S. Karger, Basel.Google Scholar
  49. Maeda, T., and Ohnishi, S., 1980, Activation of influenza virus by acidic media causes hemolysis and fusion of erythrocytes, FEBS Lett. 122: 283–287.PubMedCrossRefGoogle Scholar
  50. Mann, E., Edwards, J., and Brown, D. T., 1983, Polycaryocyte formation mediated by Sindbis virus glycoproteins, J. Virol. 45: 1083–1089.PubMedGoogle Scholar
  51. Marker, S. C., Connelly, D., and Jahrling, P. B., 1977, Receptor interaction between Eastern equine encephalitis virus and chicken embryo fibroblasts, J. Virol. 21 (3): 981–985.PubMedGoogle Scholar
  52. Marsh, M., 1984, The entry of enveloped viruses into cells by endocytosis, Biochem. J. 218: 1–10.Google Scholar
  53. Marsh, M., and Helenius, A., 1980, Adsorptive endocytosis of Semliki Forest virus, J. Mol. Biol. 142: 439–454.Google Scholar
  54. Marsh, M., Wellsteed, J., Kern, H., Harms, E., and Helenius, A., 1982, Monensin inhibits Semliki Forest virus penetration into baby hamster kidney (BHK-21) cells, Proc. Natl. Acad. Sci. U.S.A. 79: 5297–5301.Google Scholar
  55. Marsh, M., Bolzau, E., and Helenius, A., 1983a, Penetration of Semliki Forest virus from acidic prelysosomal vacuoles, Cell 32: 931–940.PubMedCrossRefGoogle Scholar
  56. Marsh, M., Bolzau, E., White, J,. and Helenius, A., 1983b, Interactions of Semliki Forest virus spike glycoprotein rosettes and vesicles with cultured cells, J. Cell Biol. 96: 455461.Google Scholar
  57. Massen, J. A., and Terhorst, C., 1981, Identification of a cell-surface protein involved in the binding site of Sindbis virus on human lymphoblastic cell lines using a heterobifunctional cross-linker, Eur. J. Biochem. 115: 153–158.Google Scholar
  58. Matlin, K., Reggio, H., Helenius, A., and Simons, K., 1981, The infective entry of influenza virus into MDCK-cells, J. Cell Biol. 91: 601–613.PubMedCrossRefGoogle Scholar
  59. Matlin, K., Reggio, H., Simons, K., and Helenius, A., 1982, The pathway of vesicular stomatitis entry leading to infection, j. Mol. Biol. 156: 609–631.Google Scholar
  60. Maxfield, F. R., 1982, Weak bases and ionophores rapidly and reversibly raise the pH of endocytic vesicles in cultured mouse fibroblasts, J. Cell Biol. 95: 676–681.PubMedCrossRefGoogle Scholar
  61. Meager, A., and Hughes, R. C., 1977, Virus receptors, in: Receptors and Recognition, Series A, Vol. 4 ( P. Cuatrecasas and M. F. Greaves, eds.), pp. 143–195, Chapman and Hall, London.Google Scholar
  62. Merion, M., Schlesinger, P., Brooks, R. M., Moehring, J. M., Moehring, T. J., and Sly, W. S., 1983, Defective acidification of endosomes in Chinese hamster ovary cell mutants “cross-resistant” to toxins and viruses, Proc. Natl. Acad. Sci. U.S.A. 80: 5315–5319.Google Scholar
  63. Miller, D. K., and Lenard, J., 1980, Inhibition of vesicular stomatitis virus infection by spike glycoprotein, J. Cell Biol. 84: 430–437.PubMedCrossRefGoogle Scholar
  64. Miller, D. K., and Lenard, J., 1981, Antihistaminics, local anesthetics and other amines as antiviral agents, Proc. Natl. Acad. Sci. U.S.A. 78: 3605–3609.Google Scholar
  65. Mooney, J. J., Dalrymple, J. M., Alving, C. R., and Russell, P. K., 1975, Interaction of Sindbis virus with liposomal model membranes, J. Virol. 15: 225–231.PubMedGoogle Scholar
  66. Murphy, R. F., Powers, S., and Cantor, C. R., 1984, Endosome pH measured in single cells by dual fluorescence flow cytometry: Rapid acidification of insulin to pH 6, J. Cell Biol. 98: 1757–1762.PubMedCrossRefGoogle Scholar
  67. Ohkuma, S., and Poole, B., 1978, Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents, Proc. Natl. Acad. Sci. U.S.A. 75: 3327–3331.Google Scholar
  68. Ohkuma, S., and Poole, B., 1981, Cytoplasmic vacuolation of mouse peritoneal macrophages and the uptake into lysosomes of weakly basic substances, J. Cell Biol. 90: 656–664.PubMedCrossRefGoogle Scholar
  69. Oldstone, M. B. A., Tishon, A., Dutko, F., Kennedy, S. I. T., Holland, J. J., and Lampert, P. W., 1980, Does the major histocompatibility complex serve as a specific receptor for Semliki Forest virus ?, J. Virol. 34: 256–265.PubMedGoogle Scholar
  70. Pastan, I., and Willingham, M. C., 1983, Receptor-mediated endocytosis: Coated pits, receptosomes and the Golgi, Trends Biochem. Sci. 8: 250–254.Google Scholar
  71. Poole, B., and Ohkuma, S., 1981, Effect of weak bases on the intralysosomal pH in mouse peritoneal macrophages, J. Cell Biol. 90: 665–669.PubMedCrossRefGoogle Scholar
  72. Redmond, S., Peters, G., and Dickson, C., 1984, Mouse mammary tumor virus can mediate cell fusion at reduced pH, Virology 133: 393–402.PubMedCrossRefGoogle Scholar
  73. Rice, C., and Strauss, J., 1981, Nucleotide sequence of the 26S mRNA of Sindbis virus and deduced sequence of the encoded virus structural proteins, Proc. Natl. Acad. Sci. U.S.A. 78: 2062–2066.Google Scholar
  74. Robbins, A. R., Oliver, C., Bateman, J. L., Krag, S. S., Galloway, C. J., and Mellman, I., 1984, A single mutation in Chinese hamster ovary cells impairs both Golgi and endosomal functions, J. Cell Biol. 99: 1296–1308.PubMedCrossRefGoogle Scholar
  75. Rudnick, G., 1985, Acidification of intracellular organelles: Mechanism and function, in: Physiology of Membrane Disorders ( T. Andreoli, D. D. Fanestil, J. F. Hoffman, and S. G. Schultz, eds.), pp. 409–422, Plenum Press, New York.Google Scholar
  76. Silverstein, S. C., Steinman, R. M., and Cohn, Z. A., 1977, Endocytosis, Annu. Rev. Biochem. 46: 669–722.Google Scholar
  77. Skehel, J., Bayley, P., Brown, E., Martin, S., Waterfield, M., White J., Wilson, I., and Wiley, D., 1982, Changes in the conformation of influenza virus hemagglutinin at the pH optimum of virus-mediated membrane fusion, Proc. Natl. Acad. Sci. U.S.A. 79: 968–972.Google Scholar
  78. Smith, A. L., and Tignor, G. H., 1980, Host cell receptors for two strains of Sindbis virus, Arch. Virol. 66 (1): 11–26.Google Scholar
  79. Söderlund, H., Kääriainen, L., Von Bonsdorff, C.-H., and Weckstein, P., 1972, Properties of Semliki Forest virus nucleocapsid II: An irreversible contraction by acid pH, Virology 47: 753–760.Google Scholar
  80. Steinman, R. M., Mellman, I. S., Muller, W. A., and Cohn, Z. A., 1983, Endocytosis and the recycling of plasma membrane, J. Cell Biol. 96: 1–27.PubMedCrossRefGoogle Scholar
  81. Talbot, P. J., and Vance, D. E., 1980, Sindbis virus infects BHK-cells via a lysosomal route, Can. J. Biochem. 58: 1131–1137.Google Scholar
  82. Tanasugam, L., McNeil, P., Reynolds, G. T., and Taylor, D. L., 1984, Microspectrofluorometry by digital image processing: Measurement of cytoplasmic pH, J. Cell Biol. 98: 717–724.Google Scholar
  83. Tycko, B., and Maxfield, F. R., 1982, Rapid acidification of endocytic vesicles containing a2-macroglobulin, Cell 28: 643–651.PubMedCrossRefGoogle Scholar
  84. Väänanen, P., and Kääriäinen, L., 1979, Hemolysis by two alphaviruses: Semliki Forest virus and Sindbis virus, J. Gen. Virol. 43: 593–601.Google Scholar
  85. Väänanen, P., and Kääriäinen, L., 1980, Fusion and haemolysis of erythrocytes caused by three togaviruses: Semliki Forest, Sindbis and rubella, J. Gen. Virol. 46: 467–475.Google Scholar
  86. Väänanen, P., Gahmberg, C. G., and Kääriäinen, L., 1981, Fusion of Semliki Forest virus with red cell membranes, Virology 110: 366–374.PubMedCrossRefGoogle Scholar
  87. Webster, R. G., Brown, L. E., and Jackson, D. C., 1983, Changes in the antigenicity of the hemagglutinin molecule of H3 influenza virus at acidic pH, Virology 126: 587–599.PubMedCrossRefGoogle Scholar
  88. White, J., and Helenius, A., 1980, pH-dependent fusion between the Semliki Forest virus membrane and liposomes, Proc. Natl. Acad. Sci. U.S.A. 77: 3273–3277.Google Scholar
  89. White, J., Kartenbeck, J., and Helenius, A., 1980, Fusion of Semliki Forest virus with the plasma membrane can be induced by low pH, J. Cell Biol. 87: 264–272.PubMedCrossRefGoogle Scholar
  90. White, J., Matlin, K., and Helenius, A., 1981, Cell fusion by Semliki Forest, influenza and vesicular stomatitis virus, J. Cell Biol. 89: 674–679.PubMedCrossRefGoogle Scholar
  91. White, J., Kielian, M., and Helenius, A., 1983, Membrane fusion proteins of enveloped animal viruses, Q. Rev. Biophys. 16: 151–195.Google Scholar
  92. Wibo, M., and Poole, B., 1974, Protein degradation in cultured cells. II. The uptake of chlooquine by rat fibroblasts and the inhibition of cellular protein degradation and cathepsin B1, J. Cell Biol. 63: 430–440.PubMedCrossRefGoogle Scholar
  93. Wilson, I., Skehel, J., and Wiley, D., 1981, Structure of the hemagglutinin membrane glycoprotein of influenza virus at 3 A resolution, Nature (London) 289: 366–373.CrossRefGoogle Scholar
  94. Yewdell, J. W., Gerhard, W., and Bachi, T., 1983, Monoclonal anti-hemagglutinin antibodies detect irreversible antigenic alterations that coincide with the acid activation of influenza virus A/PR/834-mediated hemolysis, J. Virol. 48: 239–248.PubMedGoogle Scholar
  95. Yoshimura, A., and Ohnishi, S.-I., 1984, Uncoating of influenza virus in endosomes, J. Virol. 51: 497–504.PubMedGoogle Scholar
  96. Yoshimura, A., Kuroda, K., Yamashina, S., Maeda, T., and Ohnishi, S.-I., 1982, Infectious cell entry mechanism of influenza virus, J. Virol. 43: 284–293.PubMedGoogle Scholar
  97. Young, J. D.-E., Young, G. P. H., Cohn, Z. A., and Lenard, J., 1983, Interaction of enveloped viruses with planar bilayer membranes: Observations of Sendai, influenza, vesicular stomatitis and Semliki Forest viruses, Virology 128: 186.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Margaret Kielian
    • 1
  • Ari Helenius
    • 1
  1. 1.Department of Cell BiologyYale School of MedicineNew HavenUSA

Personalised recommendations