Pathobiology of the Flaviviruses

  • Thomas P. Monath
Part of the The Viruses book series (VIRS)


Among arthropod-borne and related viruses, the Flaviviridae are medically the most important group and biologically one of the most intriguing. Elucidation of perplexingly complex virus- and host-specified factors that underlie virulence and pathogenesis has lagged behind other areas of virology, and the available information is largely descriptive. Ultimately, flavivirus biology and pathogenesis will be understood in terms of viral gene expression, virus receptor—host cell membrane interactions, biochemical alterations in host cells, physiological responses, and immune and nonimmune mechanisms that control virus replication and virus spread, subjects to which other chapters in this book are devoted. There will remain, however, a need to understand and synthesize this information with observations relating to infection at the level of the intact organism (virus, vector, and host) and of populations of organisms in nature. It is at these levels that the phenomena that require explanation first present themselves.


West Nile Virus Dengue Virus Japanese Encephalitis Virus Encephalitis Virus Yellow Fever 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Albagai, C., and Chaimoff, R., 1959, A case of West Nile myocarditis, Harefuah 57: 274–275.Google Scholar
  2. Albrecht, P., 1960, Pathogenesis of experimental infection with tick-borne encephalitis virus, in: Biology of Viruses of the Tick-Borne Encephalitis Complex ( H. Libikova, ed.), pp. 247–257, Academic Press, New York.Google Scholar
  3. Albrecht, P., 1968, Pathogenesis of neurotropic arbovirus infections, Curr. Top. Microbiol. Immunol. 43: 44–91.PubMedCrossRefGoogle Scholar
  4. Almagro Vasquez, D., Gonzalez Cabrera, I., Cruz Gomez, Y., and Castaneda Morales, M., 1983, Platelet function in dengue hemorrhagic fever, Acta Haematol. 70: 276–277.CrossRefGoogle Scholar
  5. Andersen, A. A., and Hanson, R. P., 1970, Experimental transplacental transmission of St. Louis encephalitis virus in mice, Infect. Immun. 2: 230–325.Google Scholar
  6. Andersen, A. A., and Hanson, R. P., 1974, Influence of sex and age on natural resistance to St. Louis encephalitis virus infection in mice, Infect. Immun. 9: 1123–1125.PubMedGoogle Scholar
  7. Andersen, A. A., and Hanson, R. P., 1975, Intrauterine infection of mice with St. Louis encephalitis virus Immunological, physiological, neurological, and behavioral effects in progeny, Infect. Immun. 12: 1173–1183.PubMedGoogle Scholar
  8. Asher, D. M., 1979, Persistent tick-borne encephalitis infection in man and monkeys: Relation to chronic neurologic disease, in: Arctic and Tropical Arboviruses, Proceedings of the 2nd International Symposium on Arctic Arboviruses (E. Kurstak, ed.), pp. 179195, Academic Press, New York.Google Scholar
  9. Aung-Khin, M., Khin, Ma-Ma, Thant-Zin, 1975, Changes in the tissues of the immune system in dengue hemorrhagic fever, J. Trop. Med. Hyg. 78: 256–261.Google Scholar
  10. Badman, R. T., Campbell, J., and Alfred, J., 1984, Arbovirus infections in horses—Victoria, 1984, Communicable Disease Intell No. 84/17, Australia.Google Scholar
  11. Barbareschi, G., 1957, Glomenulosi tossica in febbre gialla, Rev. Biol. Trop. 5: 201–209.Google Scholar
  12. Barnes, W. J. S., and Rosen, L., 1974, Fatal hemorrhagic disease and shock associated with primary dengue infection on a Pacific Island, Am. J. Trop. Med. Hyg. 23: 495–506.PubMedGoogle Scholar
  13. Basanta Otero, P., Gonzalez Villalonga, C., and Orbeal Aldama, L, 1983, Platelet autoantibodies in dengue hemorrhagic fever, Acta Haematol. 70: 141–142.PubMedCrossRefGoogle Scholar
  14. Bearcroft, W. G. C., 1957, The histopathology of the liver of yellow fever infected rhesus monkey, J. Pathol. Bacteriol. 74: 295–303.CrossRefGoogle Scholar
  15. Bhamarapravati, N., 1981, Pathology and pathogenesis of DHF, in: Dengue Hemorrhagic Fever, 1981 ( S. Hotta, ed.), pp. 207–214, International Center for Medical Research Kobe University School of Medicine Kobe, Japan.Google Scholar
  16. Bhamarapravati, N., and Boonpucknavig, V., 1966, Immunofluorescent study of dengue virus in human cases, Bull. W.H.O. 35: 50.PubMedGoogle Scholar
  17. Bhamarapravati, N., Tuchinda, P., and Boonyapaknavik, V., 1967, Pathology of Thailand haemorrhagic fever: A study in 100 autopsy cases, Ann. Trop. Med. Parasitol. 61: 500–510.PubMedGoogle Scholar
  18. Bhatt, P. N., and Jacoby, R. O., 1976, Genetic resistance to lethal flavivirus encephalitis. II. Effect of immunosuppression, J. Infect. Dis. 134: 166–173.PubMedCrossRefGoogle Scholar
  19. Bierman, H. R., and Nelson, E. R., 1965, Hematodepressive virus diseases of Thailand, Ann. Intern. Med. 62: 867–884.PubMedGoogle Scholar
  20. Blackburn, N. K., and Swanepoel, R., 1980, An investigation of flavivirus infections of cattle in Zimbabwe, Rhodesia with particular reference to Wesselsbron virus, J. Hyg. 85: 133.CrossRefGoogle Scholar
  21. Bond, J. O., 1969, St. Louis encephalitis and dengue fever in the Caribbean area: Evidence of possible cross-protection, Bull. W.H. O. 40: 160–163.Google Scholar
  22. Boonpucknavig, S., and Udomsangpetch, R., 1983, Autoantibodies in viral infection, J. Clin. Lab. Immunol. 10: 171–172.PubMedGoogle Scholar
  23. Boonpucknavig, V., Bhamarapravati, N., Boonpucknavig, S., Futradul, P., and Tanpaichitr, P., 1976a, Glomerular changes in dengue hemorrhagic fever, Arch. Pathol. Lab. Med. 100: 206–212.PubMedGoogle Scholar
  24. Boonpucknavig, S., Bhamarapravati, N., Nimmannitya, S., Phalavadhtana, A., and Siripont, J., 1976b, Immunofluorescent staining of the surfaces of lymphocytes in suspension from patients with dengue hemorrhagic fever, Am. J. Pathol. 85: 37–47.PubMedGoogle Scholar
  25. Boonpucknavig, S., Lohachitranond, C., and Nimmannitya, S., 1979a, The pattern and nature of the lymphocyte population response in dengue hemorrhagic fever, Am. J. Trop. Med. Hyg. 28: 885–889.PubMedGoogle Scholar
  26. Boonpucknavig, S., Boonpucknavig, V., Bhamarapravati, N., and Nimmaranitya, S., 1979b, Immunofluorescent study of skin rash in patients with dengue hemorrhagic fever, Arch. Pathol. Lab. Med. 103: 463–466.PubMedGoogle Scholar
  27. Boonpucknavig, S., Vettiviroj, O., and Boonpucknavig, V., 1981, Infection of young adult mice with dengue virus type 2, Trans. R. Soc. Trop. Med, Hyg. 75: 647–653.Google Scholar
  28. Bowen, G. S., Monath, T. P., Kemp, G. E., Kerschner, J. H., and Kirk, L. J., 1980, Geographic variation among St. Louis encephalitis virus strains in the viremic responses of avian hosts, Am. J. Trop. Med. Hyg. 29: 1411–1419.PubMedGoogle Scholar
  29. Bradish, C. J., Fitzgeorge, R., and Titmuss, D., 1980, The responses of normal and athymic mice to infections by togaviruses: Strain differentiation in active and adoptive immunization, J. Gen. Virol. 46: 255–265.PubMedCrossRefGoogle Scholar
  30. Brandriss, M. W., and Schlesinger, J. J., 1984, Passive protection of mice to intracerebral challenge with 17D yellow fever viruses by monoclonal antibodies to 17D yellow fever and to dengue 2, Abstr. XI Int. Cong. Trop. Med. Malaria, Calgary, Alb., p. 13.Google Scholar
  31. Brinker, K. R., and Monath, T. P., 1980, The acute disease, in: St. Louis Encephalitis (T. P. Monath, ed.), pp. 503–534, American Public Health Association, Washington, D.C.Google Scholar
  32. Burke, D. S., Schmaljohn, C. S., and Dalrymple, J. M., 1985a, Strains of Japanese encephalitis virus isolated from human brains have a highly conserved genotype compared to strains isolated from other natural hosts, Abstr. Ann. Meet. Am. Soc. Virol., Univ. New Mex., Albuquerque.Google Scholar
  33. Burke, D. S., Lorsomondee, W., Leake, C., Hoke, C. H., Nisalak, A., Chongswasdi, V., and Laorakpongse, T., 1985b, Fatal outcome in acute Japanese encephalitis, Am. J. Trop. Med. Hyg. 34: 1203–1210.PubMedGoogle Scholar
  34. Burke, D. S., Nisalak, A., Ussery, M., Laorakpongse, T., and Chantaribul, S., 1985c, Kinetics of Japanese encephalitis virus immunoglobulin M and G antibodies in human serum and cerebrospinal fluid, J. Infect. Dis. (in press).Google Scholar
  35. Buxton, D., and Reid, H. W., 1975, Experimental infection of red grouse with louping ill virus (flavivirus group). II. Neuropathology, J. Comp. Pathol. 85: 231–235.PubMedCrossRefGoogle Scholar
  36. Camain, R, and Lambert, D., 1966, Histopathologie des foies amarils preleves postmortem et par ponction-biopsie hepatique au cours de l’epidemie de Diourbel (Senegal), Novembre—Decembre, 1965, Bull. Soc. Med. Afr. Noire Lang. Fr. 11: 522–540.PubMedGoogle Scholar
  37. Camenga, D. L., and Nathanson, N., 1975, An immunopathologic component in experimental togavirus encephalitis, J. Neuropathol. Exp. Neurol. 34: 492–500.PubMedCrossRefGoogle Scholar
  38. Camenga, D. L., Nathanson, N., and Cole, G. A., 1974, The relative influence of cellular and humoral factors in the modification of cyclophosphamide-potentiated West Nile virus encephalitis, J. Infect. Dis. 130; 634–641.PubMedCrossRefGoogle Scholar
  39. Cantanzaro, P. J., Brandt, W. E., Hogrefe, W. R., and Russell, P. K., 1974, Detection of dengue cell surface antigens by peroxidase labelled antibodies and immune cytolysis, Infect. Immun. 10: 381–388.Google Scholar
  40. Cardosa, M. J., Porterfield, J. S., and Gordon, S., 1983, Complement receptor mediates enhanced flavivirus replication in macrophage, J. Exp. Med. 158: 258–263.PubMedCrossRefGoogle Scholar
  41. Cardosa, M. J., Gordon, S., Hirsch, S., Springer, T. A., and Porterfield, J. S., 1986, Interaction of West Nile virus with primary murine macrophages: Role of cell activation and receptors for antibody and complement, J. Virol. (in press).Google Scholar
  42. Casals, J., Henderson, B. E., Hoogstraal, H., Johnson, K., and Shelokov, A., 1970, A review of Soviet hemorrhagic fevers, 1969, J. Infect. Dis. 122: 437–453.PubMedCrossRefGoogle Scholar
  43. Chamberlain, R. W., 1958, Vector relationships of the arthropod-borne encephalitides in North America, Ann. N. Y. Acad. Sci. 70: 312–319.PubMedCrossRefGoogle Scholar
  44. Chaturvedi, U. C., and Shukla, M. I., 1981, Characterization of the suppressor factor produced in the spleen of dengue virus infected mice, Ann. Immunol. (Paris) 132C: 245–255.Google Scholar
  45. Chaturvedi, U. C., Tandon, P., Mathur, A., and Kumar, A., 1978, Host defense mechanisms against dengue virus infection in mice, J. Gen. Virol. 39: 293–302.PubMedCrossRefGoogle Scholar
  46. Chaturvedi, U. C., Mathur, A., Tandon, P., Natu, S. M., Rajvanshi, S., and Tandon, H. O., 1979, Variable effect on peripheral blood leukocytes during JE virus infection of man, Clin Exp. Immunol. 38: 492–498.PubMedGoogle Scholar
  47. Chaturvedi, U. C., Mathur, A., Chandra, A., Das, S. K., Tandon, H. O., and Singh, U. K., 1980a, Transplacental infection with Japanese encephalitis virus, J. Infect. Dis. 141: 712–715.PubMedCrossRefGoogle Scholar
  48. Chaturvedi, U. C., Bhargava, A., and Mathur, A., 1980b, Production of cytotoxic factor in the spleen of dengue virus-infected mice, Immunology 40: 653–658.Google Scholar
  49. Chaturvedi, U. C., Dalakoti, H., and Mathur, A., 1980c, Characterization of the cytotoxic factor produced in the spleen of dengue virus-infected mice, Immunology 41: 387–392.PubMedGoogle Scholar
  50. Chaturvedi, U. C., Shukla, M. I., and Mathur, A., 198la, Thymus dependent lymphocytes of the dengue virus infected mouse spleen mediate suppression through prostaglandin, Immunology 42: 1–6.Google Scholar
  51. Chaturvedi, U. C., Shukla, M. I., Mathur, K. R., and Mathur, A., 198 lb, Dengue virus-induced cytotoxic factor suppresses immune response of mice to sheep RBC, Immunology 43: 311–316.Google Scholar
  52. Chaturvedi, U. C., Mathur, K. R., Gulati, L., and Mathur, A., 1981c, Target lymphoid cells for the cytotoxic factor produced in the spleen of dengue virus-infected mice, Immunol. Lett. 3: 13–16.PubMedCrossRefGoogle Scholar
  53. Chaturvedi, U. C., Shukla, M. I., and Mathur, A., 1982a, Role of macrophages in transmission of dengue virus-induced suppressor signal to a subpopulation of T lymphocytes, Ann. Immunol. (Paris) 133C: 83–92.Google Scholar
  54. Chaturvedi, U. C., Gulati, L., and Mathur, A., 1982b, Inhibition of E-rosette formation and phagocytosis by human blood leukocytes after treatment with dengue virus-induced cytotoxic factor, Immunology 45: 679–685.PubMedGoogle Scholar
  55. Chaturvedi, U. C., Gulati, L., and Mathur, A., 1983a, Further studies on the production of dengue virus-induced macrophage cytotoxin, Ind. J. Exp. Biol. 21: 235–279.Google Scholar
  56. Chaturvedi, U. C., Nagar, R., and Mathur, A., 1983b, Effect of dengue virus infection on Fc receptor functions of mouse macrophages, J. Gen. Virol. 64: 2399–2407.PubMedCrossRefGoogle Scholar
  57. Chunikhin, S. P., and Kurenkov, V. B., 1979, Viraemia in Clethrionomys glareolus—a new ecological marker of tick-borne encephalitis virus, Acta Virol. 23: 257–260.PubMedGoogle Scholar
  58. Clarke, D. H., 1960, Antigenic analysis of certain group B arthropod-borne viruses by antibody absorption, J. Exp. Med. 111: 21–32.PubMedCrossRefGoogle Scholar
  59. Clarke, D. H., 1969, Further studies on antigenic relationships among the viruses of the group B tick-borne complex, Bull. W.H.O. 31: 45–56.Google Scholar
  60. Coetzer, J. A. W., and Barnard, J. H., 1977, Hydrops amnii in sheep with hydranencephaly and arthrogryposis with Wesselsbron and Rift Valley fever as aetiological agents, Onderstepoort J. Vet. Res. 44: 119–126.Google Scholar
  61. Coetzer, J. A. W., and Theodoridis, A., 1982, Clinical and pathological studies in adult sheep and goats experimentally injected with Wesselsbron disease virus, Onderstepoort J. Vet. Res. 49: 19–22.PubMedGoogle Scholar
  62. Coetzer, J. A. W., Theodoridis, A., and Van Heerden, A., 1978, Wesselsbron disease: Pathological, haematological and clinical studies in natural leases and experimentally infected newborn lambs, Onderstepoort J. Vet. Res. 45: 93–106.PubMedGoogle Scholar
  63. Cohen, S. N., and Halstead, S. B., 1966, Shock associated with dengue infection. 1. Clinical and physiologic manifestations of dengue hemorrhagic fever in Thailand, 1964, J. Pediatr. 68: 448–456.PubMedCrossRefGoogle Scholar
  64. Cole, G. A., and Nathanson, N., 1968, Potentiation of experimental arbovirus encephalitis by immunosuppressive doses of cyclophosphamide, Nature (London) 220: 399–401.CrossRefGoogle Scholar
  65. Cole, G. A., and Wisseman, C. L., Jr., 1969, The effect of hyperthermia on dengue virus infection of mice, Proc. Soc. Exp. Biol. Med. 130: 359–363.PubMedGoogle Scholar
  66. Cypress, R. H., Lubiniecki, A. S., and Hammon, W. McD., 1973, Immunosuppression and increased susceptibility to Japanese B encephalitis virus in Trichinella sprialis-infected mice, Proc. Soc. Exp. Biol. Med. 143: 469–473.Google Scholar
  67. Darnell, M. B., and Koprowski, H., 1974, Genetically determined resistance to infection with group B arboviruses. II. Increased production of interfering particles in cell culture from resistant mice, J. Infect. Dis. 129: 208–256.Google Scholar
  68. David-West, T. S., 1975, Concurrent and consecutive infection and immunization with yellow fever and UGMP-359 virus, Arch. Virol. 48: 21–28.PubMedCrossRefGoogle Scholar
  69. David-West, T. S., and Smith, J. A., 1971, Yellow fever virus infection: A correlation of complement fixing antigen with histopathology, Br. J. Exp. Pathol. 52: 114–121.PubMedGoogle Scholar
  70. Del Canto, M. C., and Rabinowitz, S. G., 1982, Experimental models of virus-induced demyelination of the central nervous system, Ann. Neurol. 11: 109–127.CrossRefGoogle Scholar
  71. Dennis, L. H., Reisberg, B. E., Crosbie, J., Crozier, D., and Conrad, M. E., 1969, The original haemorrhagic fever: Yellow fever, Br. J. Haematol. 17: 455–462.PubMedCrossRefGoogle Scholar
  72. DeVries, R. R. P., Meera Khan, P., Bernini, L. F., van Loghem, E., and van Rood, J. J., 1979, Genetic control of survival in epidemics, J. Immunogenet. 6: 271–287.CrossRefGoogle Scholar
  73. Doherty, P. C., and Reid, H. W., 1971, Louping ill encephalomyelitis in the sheep. II. Distribution of virus and lesions in nervous tissue, J. Comp. Pathol. 81: 531–536.PubMedCrossRefGoogle Scholar
  74. Doi, R., Oya, A., Shirasaka, A., Yabe, S., and Sasa, M., 1983, Studies on Japanese encephalitis virus infection of reptiles. II. Role of lizards on hibernation of Japanese encephalitis virus, Jpn. J. Exp. Med. 53: 125–134.PubMedGoogle Scholar
  75. Doury, J. C., Teyssier, J., Forcain, A., and Doury, F., 1976, Modifications de l’adhésivité plaquettaire au cours de la dengue à forme hémorrhagiques, Bull. Soc. Pathol. Exot. 69: 493–495.Google Scholar
  76. Doury, J. C., Teyssier, J., Doury, F., Gentile, B., and Forçain, M., 1980, Dengue à forme hémorrhagique: Mise en evidence d’un syndrome de coagulopathie de consommation, Med. Trop. (Marseille) 40: 127–135.Google Scholar
  77. Duffy, C. E., and Murphree, O. D., 1959, Maze performance of mature rats recovered from early postnatal infection with Murray Valley encephalitis, J. Comp. Physiol. Psychol. 52: 175–180.PubMedCrossRefGoogle Scholar
  78. Duffy, O. D., Murphree, O. D., and Morgan, P. N., 1958, Learning deficit in mature rats recovered from early post-natal infection with West Nile virus, Proc. Soc. Exp. Biol. Med. 98: 242–244.PubMedGoogle Scholar
  79. Eckels, K. H., Brandt, W. E., Harrison, V. R., McConn, J. M., and Russell, P. K., 1976, Isolation of a temperature-sensitive dengue 2 virus under conditions suitable for vaccine development, Infect. Immun. 14: 1221–1227.PubMedGoogle Scholar
  80. Edelman, R., Schneider, R. J., and Chieowanich, P., 1975a, The effect of dengue virus in fection on the clinical sequelae of Japanese encephalitis: A one year followup study in Thailand, Southeast Asian J. Trop. Med. Public Health 6: 308–315.PubMedGoogle Scholar
  81. Edelman, R., Nimmannitya, S., Colman, R. W., Talamo, R. C., and Top, F. H., Jr., 1975b, Evaluation of the plasma kinin system in dengue hemorrhagic fever, J. Lab. Clin. Med. 86: 410–421.PubMedGoogle Scholar
  82. Edelman, R., Schneider, R. J., Vejjajiva, A., Pornpibul, R., and Voodhikul, P., 1976, Persistence of virus specific IgM and clinical recovery after Japanese encephalitis, Am. J. Trop. Med. Hyg. 23: 733–738.Google Scholar
  83. Ehrenkrantz, N. J., Zemel, E. S., Bernstein, C., and Slater, K., 1974, Immunoglobulin M in the cerebrospinal fluid of patients with arbovirus encephalitis and other infections of the central nervous system, Neurology 24: 976–980.CrossRefGoogle Scholar
  84. Ehrnst, A., Lambert, B., and Fagraeus, A., 1978, DNA synthesis in subpopulations of blood mononuclear leucocytes in human subjects after vaccination against yellow fever, Scand. J. Immunol. 8: 339–346.PubMedCrossRefGoogle Scholar
  85. El Dadah, A. H., Nathanson, N., and Sarsitis, R., 1967, Pathogenesis of West Nile encephalitis in mice and rats. I. Influence of age and species on mortality and infections, Am. J. Epidemiol. 86: 765–775.Google Scholar
  86. Elton, N. W., Romero, A., and Trejos, A., 1955, Clinical pathology of yellow fever, Am. J. Clin. Pathol. 25: 135–146.PubMedGoogle Scholar
  87. Embil, J. A., Camfield, P., Artsob, H., and Chase, D. P., 1983, Powassan virus encephalitis resembling herpes simplex encephalitis, Arch Intern. Med. 143: 341–343.PubMedCrossRefGoogle Scholar
  88. Estrin, W. J., 1976, The serological diagnosis of St. Louis encephalitis in a patient with the syndrome of opsoclonia, body tremulousness and benign encephalitis, Ann. Neurol. 1: 596–598.CrossRefGoogle Scholar
  89. Fagraeus, A., Ehrnst, A., Klein, E., Patarroyo, M., and Goldstein, G., 1982, Characterization of blood mononuclear cells reacting with K562 cells after yellow fever vaccination, Cell. Immunol. 67: 37–48.PubMedCrossRefGoogle Scholar
  90. Findlay, G. M., and Clarke, L. P., 1934, Susceptibility of hedgehog to yellow fever: Viscerotropic virus, Trans. R. Soc. Trop. Med. Hyg. 28: 193–200.CrossRefGoogle Scholar
  91. Findlay, G. M., and Clarke, L. P., 1935, Infection with neurotropic yellow fever virus fol- lowing instillation into nares and conjunctival sac, J. Pathol. Bacteriol. 40: 55–64.CrossRefGoogle Scholar
  92. Fitzgeorge, R., and Bradish, C. J., 1980, The in vivo differentiation of strains of yellow fever virus in mice, J. Gen. Virol. 46: 1–13.PubMedCrossRefGoogle Scholar
  93. Fleming, P., 1977, Age-dependent and strain-related differences of virulence of Semliki Forest virus in mice, J. Gen. Virol. 37: 93–105.PubMedCrossRefGoogle Scholar
  94. Fokina, G. I., Malenko, G. V., Levina, L. S., Koreshkova, G. V., Rzhakhova, O. E., Mamonenko, L. L., Pogodina, V V, and Frolova, M. P., 1982, Persistence of tick-borne encephalitis virus. V. Virus localization after subcutaneous inoculation, Acta Virol. 26: 369–375.PubMedGoogle Scholar
  95. Francis, T., Moore, D. L., Edington, G. M., and Smith, J. A., 1972, A clinicopathological study of human yellow fever, Bull. W.H.O. 46: 659–667.PubMedGoogle Scholar
  96. Fresh, J. W., Reyes, V., Clarke, E. J., and Uylangco, C. V., 1969, Philippine hemorrhagic fever: A clinical, laboratory and necropsy study, J. Lab. Clin. Med. 73: 451–458.PubMedGoogle Scholar
  97. Funahara, Y., Fujita, N., Okuno, Y., Ogawa, K., Hirata, M., Miki, M., and Kitaguchi, H., 1982, Virus-induced thrombocytopenia: In vitro studies on the dengue virus—platelet interaction, Blood Vessel 13: 341–344.Google Scholar
  98. Futrakul, P., Mitrakul, C., Chumderpadetsuk, S., and Sitprija, V., 1977, Studies on the pathogenesis of dengue hemorrhagic fever: Hemodynamic alteration and effect of alpha blocking agent, J. Med. Assoc. Thailand 60: 610–614.Google Scholar
  99. Gainer, S. H., and Pry, T. W., 1972, Effect of arsenicals on viral infections in mice, Am. J. Vet. Res. 33: 2299–2307.PubMedGoogle Scholar
  100. Gajdosova, E., Mayer, V., and Oravec, C., 1980, Cross-reactive killer T lymphocytes in a flavivirus infection, Acta Virol. 24: 291–293.PubMedGoogle Scholar
  101. Gajdosova, E., Oravec, C., and Mayer, V., 1981, Cell mediated immunity in flavivirus infections. I. Induction of cytotoxic T lymphocytes in mice by an attenuated virus from the tick-borne encephalitis complex and its group-reactive character, Acta Virol. 25: 1018.Google Scholar
  102. Gardner, J. J., and Reyes, M. G., 1980, Pathology, in: St. Louis Encephalitis ( T. P. Monath, ed.), pp. 551–569, American Public Health Association, Washington, D.C.Google Scholar
  103. Gerhard, W., and Koprowski, H., 1977, Persistence of virus-specific memory B cells in mice CNS, Nature (London) 266: 360–361.CrossRefGoogle Scholar
  104. Gilbreath, M. J., Pavarand, K., MacDermott, R. P., Ussery, M., Burke, D. S., Nimmannitya, S., and Tulyayon, S., 1983, Cold-reactive immunoglobulin M antilymphocyte antibodies directed against B cells in Thai children with dengue hemorrhagic fever, J. Clin. Microbiol. 17: 672–676.PubMedGoogle Scholar
  105. Goldman, J., Bochna, A., and Becker, F. O., 1977, St. Louis encephalitis and subacute thyroiditis, Ann. Intern. Med. 87: 250.PubMedGoogle Scholar
  106. Gollins, S. W., and Porterfield, J. S., 1984, Flavivirus infection enhancement in macrophages: Radioactive and biological studies on the effect of antibody on viral fate, J. Gen. Virol. 65: 1261–1272.PubMedCrossRefGoogle Scholar
  107. Gorelkin, L., and Jahrling, P. B., 1975, Virus-initiated septic shock: Acute death of Venezuelan encephalitis virus-infected hamsters, Lab. Invest. 32: 78–85.PubMedGoogle Scholar
  108. Gould, E. A., Chanas, A. C., Buckley, A., and Clegg, C. S., 1983, Monoclonal immunoglobulin M antibody to Japanese encephalitis virus that can react with a nuclear antigen in mammalian cells, Infect. Immun. 41: 774–779.PubMedGoogle Scholar
  109. Gresikova, M., 1957, Elimination of tick-borne encephalitis virus by goat’s milk, Vet. Cas. 6:177–182 (in Slovak(. Gresikova, M., and Nosek, J., 1983, Marker stability of the Skalica strain (from the tick-borne encephalitis complex(propagated in Ixodes ricinus ticks, Acta Virol. 27: 180–182.Google Scholar
  110. Gresikova, M., and Sekeyova, M., 1980, Characteristics of some tick-borne encephalitis virus strains isolated in Slovakia, Acta Virol. 24: 72–75.PubMedGoogle Scholar
  111. Griffin, D. E., 1981, Immunoglobulins in the cerebrospinal fluid: Changes during acute viral encephalitis in mice, J. Immunol. 126: 27–31.PubMedGoogle Scholar
  112. Griffin, D. E., Mokhtarian, F., Park, M. M., and Hirsch, R. L., 1983, Immune responses to acute alphavirus infection of the central nervous system; Sindbis virus encephalitis in mice, prog. Brain Res. 59: 11–21.PubMedCrossRefGoogle Scholar
  113. Grimstad, P. R., Ross, Q. E., and Craig, G. B., Jr., 1980, Aedes triseriatus (Diptera: Culicidae(and La Crosse virus. II. Modification of mosquito feeding behavior by virus infection, J. Med. Entomol. 17: 1–7.Google Scholar
  114. Grossberg, S. E., and Scherer, W. F., 1966, The effect of host age, virus dose and route of inoculation on inapparent infection in mice with Japanese encephalitis virus, Proc. Soc. Exp. Biol. Med. 123: 118–124.PubMedGoogle Scholar
  115. Gubler, D. J., Suharyono, W., Sumarmo, Wulur, H., Jahja, E., and Sulianti Saroso, J., 1979, Virological surveillance for dengue haemorrhagic fever in Indonesia using the mosquito inoculation technique, Bull. W.H.O. 57: 931–936.Google Scholar
  116. Gubler, D. J., Kuno, G., and Waterman, S., 1983, Neurologic disorders associated with dengue infection, in: Procedings of the International Conference on Dengue/Dengue Haemorrhagic Fever ( T. Pang and R. Pathmanathan,), pp. 290–306. University of Malaya, Kuala Lampur.Google Scholar
  117. Guillon, J. C., Oudar, J., Joubert, L., and Hannoun, C., 1968, Lesions histologiques du Systeme nerveux dans l’infection a virus West Nile chez le cheval, Ann. Inst. Past. 114: 539–550.Google Scholar
  118. Gulati, L., Chaturvedi, U. C., and Mathur, A., 1982, Depressed macrophage functions in dengue virus-infected mice: Role of the cytotoxic factor, Br. J. Exp. Pathol. 63: 194–202.PubMedGoogle Scholar
  119. Gulati, L., Chartuvedi, U. C., and Mathur, A., 1983a, Dengue virus-induced cytotoxic factor induces macrophages to produce a cytotoxin, Immunology 49: 121–130.PubMedGoogle Scholar
  120. Gulati, L., Chaturvedi, U. C., and Mathur, A., 1983b, Plasma membrane-acting drugs inhibit the effect of dengue virus-induced cytotoxic factor, Ann. Immunol. (Paris) 134C: 227–235.Google Scholar
  121. Guzman, M. G., Kouri, G., Morier, L., Soler, M., and Fernandez, A., 1984, A study of fatal hemorrhagic dengue cases in Cuba, 1981, Bull P.A.H.O. 18: 213–220.Google Scholar
  122. Guzman, M G, Kouri, G., Bravo, J., Soler, M., and Vasquez, S., 1985, Dengue hemorrhagic fever in Cuba, 1981, II. Study of patients clinically diagnosed with dengue hemorrhagic fever and dengue shock syndrome, Trans. R. Soc. Trop. Med. Hyg. in press).Google Scholar
  123. Habu, A., Murakanu, Y., Ogasa, A., and Fujisaki, Y., 1977, Disorder of spermatogenesis and viral discharge into semen in boars infected with Japanese encephalitis, Virus 27: 2126.Google Scholar
  124. Halstead, S. B., 1979, In vivo enchancement of dengue virus infection in rhesus monkeys by passively transferred antibody, J. Infect. Dis. 140: 527–533.Google Scholar
  125. Halstead, S. B., 1980, Immunopathological parameters of togavirus disease syndromes, in: The Togaviruses: Biology, Structure, Replication ( R. W. Schleslinger, ed.), pp. 107–174, Academic Press, New York.Google Scholar
  126. Halstead, S. B., 1982a, Immunopathology in viral disease. Immune enhancement of dengue virus infection, in: Virus Infections: Modern Concepts and Status ( L. C. Olson, ed.), pp. 41–85, Marcel Dekker, New York.Google Scholar
  127. Halstead, S. B., 1982b, Dengue: Hematological aspects, Semin. Hematol. 19: 116–131.PubMedGoogle Scholar
  128. Halstead, S. B., and O’Rourke, E. J., 1977, Dengue viruses and mononuclear phagocytes. I. Infection enhancement by non-neutralizing antibody, J. Exp. Med. 146: 201–217.PubMedCrossRefGoogle Scholar
  129. Halstead, S. B., Chow, J. S., and Marchette, M. J., 1973a, Immunological enhancement of dengue virus replication, Nature (London) 243:24–25.Google Scholar
  130. Halstead, S. B., Shotwell, H., and Casals, J., 1973b, Studies on the pathogenesis of dengue infection in monkeys. II. Clinical laboratory responses to heterologous infection, J. Infect. Dis. 128: 15–22.PubMedCrossRefGoogle Scholar
  131. Halstead, S. B., Marchette, N. J., Chow, J. S., and Lolekha, S., 1976, Dengue virus replication enhancement in peripheral blood leukocytes from immune human beings, Proc. Soc. Exp. Biol. Med. 151: 136–139.PubMedGoogle Scholar
  132. Halstead, S. B., O’Rourke, E. J., and Allison, A. C., 1977, Dengue viruses and mononuclear phagocytes. II. Identity of blood and tissue leukocytes supporting in vitro infection, J. Exp. Med. 146: 218–229.PubMedCrossRefGoogle Scholar
  133. Halstead, S. B., Rojanasuphot, S., and Sangkawibha, N., 1983, Original antigenic sin in dengue, Am. J. Trop. Med. Hyg. 32: 154–156.PubMedGoogle Scholar
  134. Halstead, S. B., Venkateschan, C. N., Gentry, M. K., and Larsen, L. K., 1984, Heterogeneity of infection enhancement of dengue 2 strains by monoclonal antibodies, J. Immunol. 132: 1529–1532.PubMedGoogle Scholar
  135. Hambleton, P., Stephenson, J. R., Baskerville, A., and Wiblin, C., 1983, Pathogenesis and immune response of vaccinated and unvaccinated rhesus monkeys to tick-borne encephalitis virus, Infect. Immun. 40: 995–1003.PubMedGoogle Scholar
  136. Hammon, W. McD., and Sather, G. E., 1973, Passive immunity for arbovirus infection. I. Artificially induced prophylaxis in man and mouse for Japanese encephalitis, Am. J. Trop. Med. Hyg. 22: 524–534.PubMedGoogle Scholar
  137. Harrison, V. R., Eckels, K. H., Sagartz, J. W., and Russell, P. K., 1977, Virulence and immunogenicity of a temperature-sensitive dengue 2 virus in lower primates, Infect. Immun. 18: 151–156.PubMedGoogle Scholar
  138. Harrison, A., Murphy, F. A., Gardner, J. J., and Bauer, S. P., 1980, Myocardial and pancreatic necrosis induced by Rocio virus, a new flavivirus, Exp. Mol. Pathol. 32: 102–113.PubMedCrossRefGoogle Scholar
  139. Harrison, A., Murphy, F. A., and Gardner, J. J., 1982, Visceral target organs in systemic St. Louis encephalitis virus infection of hamsters, Exp. Mol. Pathol. 37: 292–304.PubMedCrossRefGoogle Scholar
  140. Hayashi, K., and Arita, T., 1977, Experimental double infection of Japanese encephalitis and herpes simplex virus in mouse brain, Jpn. J. Exp. Med. 47: 9–13.PubMedGoogle Scholar
  141. Haymaker, W., and Sabin, A. B., 1947, Topographic distribution of lesions in the central nervous system in Japanese B encephalitis, Arch. Neurol. Psychol. 57: 673–692.Google Scholar
  142. Heinz, F. X., and Kunz, C., 1982, Molecular epidemiology of tick-borne encephalitis virus: Peptide mapping of large non-structural proteins of European isolates and comparison with other flaviviruses, J. Gen. Virol. 62: 271–285.PubMedCrossRefGoogle Scholar
  143. Heinz, F. X., Berger, R., Majdic, O., Knapp, W., and Kunz, C., 1982, Monoclonal antibodies to the structural glycoprotein of tick-borne encephalitis virus, Infect. Immun 37: 869–874.PubMedGoogle Scholar
  144. Henderson, B. E., Cheshire, P. P., Kirya, A. B., and Lule, M., 1970, Immunologic studies with yellow fever and selected African group B arboviruses in rhesus and vervet monkeys, Am. J. Trop. Med. Hyg. 19: 110–118.PubMedGoogle Scholar
  145. Hirsch, M. S., and Murphy, F. A., 1967, Effects of anti-thymocyte serum on 17D yellow fever infection in adult mice, Nature (London) 216: 179–180.CrossRefGoogle Scholar
  146. Hofmann, H., Frisch-Niggemeyer, W., Heinz, F., and Kunz, C., 1979, Immunoglobulins to tick-borne encephalitis in the cerebrospinal fluid of man, J. Med. Virol. 4: 241–245.PubMedCrossRefGoogle Scholar
  147. Holland, J. J., 1984, Continuum of change in RNA virus genomes, in: Concepts in Viral Pathogenesis ( A. L. Notkins and M. B. A. Oldstone,), pp. 137–143, Springer-Verlag, New York.CrossRefGoogle Scholar
  148. Holland, J., Spindler, V., Horodyski, F., Grabau, E., Nichol, S., and VandePol, S., 1982, Rapid evolution of RNA genomes, Science 215: 1577–1585.PubMedCrossRefGoogle Scholar
  149. Hotta, H., Murakami, I, Miyasaki, K., Takeda, Y., Shirane, H., and Hotta, S., 1981a, Inoculation of dengue virus into nude mice, J. Gen. Viral. 52: 71–76.CrossRefGoogle Scholar
  150. Hotta, H., Murakami, I., Miyasaki, K., Takeda, Y., Shirane, H., and Hotta, S., 1981b, Localization of dengue virus in nude mice, Microbiol. Immunol. 25: 89–93.PubMedGoogle Scholar
  151. Hotta, H., Hotta, S., Matsumura, T., Wiharta, A. S., Sujudi, Kotani, S., Takada, H., and Tsuji, M., 1983, Increased production of dengue virus in mouse peritoneal macrophage cultures: A possible mechanism underlying the pathogenesis of severe dengue infection, Proceedings of the International Conference on Dengue and Dengue Hemorrhagic Fever (T. Pang and R. Pathanathan, eds.), pp. 320–324, University of Malaysia, Kuala Lampur.Google Scholar
  152. Huang, C. H., 1957, Studies of virus factors as causes of inapparent infections in Japanese B encephalitis: Virus strains, viraemia, stability to heat and infective dosage, Acta Virol. 1: 36–45.PubMedGoogle Scholar
  153. Huang, C. H., 1982, Studies of Japanese encephalitis in China, Adv. Virus Res. 27: 71–101.PubMedCrossRefGoogle Scholar
  154. Huang, C. H., and Wong, C., 1963, Relation of the peripheral multiplication of Japanese B encephalitis virus to the pathogenesis of the infection in mice, Acta Virol. 7: 322–330.Google Scholar
  155. Hudson, B. W., Wolff, K., and DeMartini, J. C., 1979, Delayed-type hypersensitivity responses in mice infected with St. Louis encephalitis virus; Kinetics of the response and effects of immunoregulatory agents, Infect. Immunol. 24: 71–76.Google Scholar
  156. Ilienko, V. I., and Pokrovskaya, O. A., 1960, Clinical picture in Macaccus rhesus monkeys infected with various strains of tick-borne encephalitis virus, in: Biology of the Viruses of the Tick-Borne Encephalitis Complex ( H. Libikova, ed.), pp. 266–269, Academic Press, New York.Google Scholar
  157. Ilienko, V. I., Komandenko, N. I., Platonov, V. G., Prozorova, I. N., and Panov, A. G., 1974, Pathogenetic study on chronic forms of tick-borne encephalitis, Acta Virol. 18: 341–346.Google Scholar
  158. Inouye, S., Matsuno, S., and Yashito, T., 1984, “Original antigenic sin” phenomenon in experimental flavivirus infections of guinea pigs: Studies by enzyme-linked immunosorbent assay, Microbiol Immunol. 28:569–574.Google Scholar
  159. Ishak, K. G., Walker, D. H., Coetzer, J. A. W., Gardner, J. J., and Gorelkin, L., 1982, Viral hemorrhagic fevers with hepatic involvement: Pathologic aspects with clinical correlations, Prog. Liver Dis. 7: 495–515.PubMedGoogle Scholar
  160. Ishii, K., Matsunaga, Y., and Kono, R., 1968, Immunoglobulins produced in response to Japanese encephalitis virus infections of man, J. Immunol. 101: 770–775.PubMedGoogle Scholar
  161. Ishii, K., Matsushita, M., and Hamada, S., 1977, Characteristic residual neuropathological features of Japanese B encephalitis, Acta Neuropathol. 38: 181–186.PubMedCrossRefGoogle Scholar
  162. Jacoby, R. O., Bhatt, P. N., and Schwartz, A., 1980, Protection of mice from lethal flavivirus encephalitis by adoptive transfer of splenic cells from donors infected with live virus, J. Infect. Dis. 141: 617–624.PubMedCrossRefGoogle Scholar
  163. Jahrling, P. B., 1976, Virulence heterogeneity of a predominantly avirulent western equine encephalitis virus population, J. Gen. Virol. 32: 121–127.PubMedCrossRefGoogle Scholar
  164. Jacoby, R. O., and Bhatt, P. N., 1976, Genetic resistance to lethal flavivirus encephalitis. I. Infection of congenic mice with Banzi virus, J. Infect. Dis. 134: 158–169.PubMedCrossRefGoogle Scholar
  165. Jahrling, P. B., and Gorelkin, L., 1975, Selective clearance of a benign clone of Venezuelan equine encephalitis virus from hamster plasma by hepatic reticuloendothelial cells, J. Infect. Dis. 132: 667–676.PubMedCrossRefGoogle Scholar
  166. Jahrling, P. B., and Scherer, W. F., 1973, Growth curves and clearance rates of virulent and benign Venezuelan encephalitis viruses in hamsters, Infect. Immun. 8: 456–462.PubMedGoogle Scholar
  167. Johnson, R. T., 1980, Selective vulnerability of neural cells to viral infections, Brain 103: 447–472.PubMedCrossRefGoogle Scholar
  168. Johnson, R. T., 1982, Viral Infections of the Nervous System, Raven Press, New York, 433 pp.Google Scholar
  169. Johnson, R. T., Burke, D. S., Elwell, M., Leake, C. J., Nisalak, A., Hoke, C. H., and Lorsomrudee, W., 1985, Japanese encephalitis: Immunocytochemical studies of viral antigen and inflammatory cells in fatal cases, Ann. Neurol. 18: 567–573.PubMedCrossRefGoogle Scholar
  170. Kaplan, A. M., and Koveleski, J. T., 1978, St. Louis encephalitis with particular involvement of the brain stem, Arch. Neurol. 35: 45–46.PubMedCrossRefGoogle Scholar
  171. Kelkar, S., 1982, Protection against Japanese encephalitis virus in infant mice by concanavalin A., Indian. J. Med. Res. 76: 47–52.PubMedGoogle Scholar
  172. Kitamura, T., 1975, Hematogenous cells in experimental Japanese encephalitis, Acta Neuropathol. 32: 341–346.PubMedCrossRefGoogle Scholar
  173. Kitamura, T., Hattori, H., Fujita, S., 1972, EM-autoradiographic studies on the inflammatory cells in experimental Japanese encephalitis, J. Electron Microsc. 21: 315–322 (in Japanese).Google Scholar
  174. Klotz, O., and Belt, T. H., 1930, Pathology of the liver in yellow fever, Am. J. Pa.thol. 6: 663–687.Google Scholar
  175. Kono, R., and Kim, K. H., 1969, Comparative epidemiological features of Japanese encephalitis in the Republic of Korea, China (Taiwan) and Japan, Bull. W.H. O. 40: 263–277.Google Scholar
  176. Kozuch, O., Nosek, J., Ernek, E., Lichard, M., and Albrecht, P., 1963, Persistence of tick-borne encephalitis virus in hibernating hedgehogs and dormice, Acta Virol. 7: 430–433.PubMedGoogle Scholar
  177. Kozuch, O., Chunikhin, S. P., Gresikova, M., Nosek, J., Kuenkov, V. B., and Lysy, J., 1981, Experimental characteristics of viremia caused by two strains of tick-borne encephalitis virus in small rodents, Acta Virol. 25: 219–224.PubMedGoogle Scholar
  178. Kundin, W. D., Liu, C., Hysell, P., and Hamachige, S., 1963, Studies on West Nile virus infection by means of fluorescent antibodies, Arch. Gesamte Virusforsch. 12: 514–528.CrossRefGoogle Scholar
  179. Kuno, G., 1982, Persistent infection of a nonvector mosquito cell line (TRA-171(with dengue viruses, Intervirology 18: 45–55.PubMedCrossRefGoogle Scholar
  180. Kurane, I., Hebblewhite, D., Brandt, W. E., and Ennis, F. A., 1984, Lysis of dengue virus-infected cells by natural cell-mediated cytotoxicity and antibody-dependent cell-mediated cytotoxicity, J. Virol. 52: 223–230.PubMedGoogle Scholar
  181. Lam, K.-W., Burke, D. S., Siemans, M., Cipperly, V., Li, C.-Y., and Lam, L. T., 1982, Characterization of serum acid phosphatase associated with dengue hemorrhagic fever, Clin. Chem. 28: 2296–2299.PubMedGoogle Scholar
  182. Lee, H. W., 1968, Multiplication and antibody formation of Japanese encephalitis virus in snakes, II. Proliferation of the virus, Seoul J. Med. 9: 147–161.Google Scholar
  183. Lehtinen, I., and Halonen, J.-P., 1984, EEG findings in tick-borne encephalitis, J. Neurol, Neurosurg. Psychiatry 47: 500–504.CrossRefGoogle Scholar
  184. LeMercier, G., Guerin, M., and Collomto, H., 1966, Etude histopathologique de l’encéphalite consécutive à l’inoculation du vaccin antiamaril de l’Institut Pasteur de Dakar, Bull. Soc. Med. Afr. Noire Lang. Fr. 11: 601–609.Google Scholar
  185. LeRoux, J. M. W., 1959, The histopathology of Wesselsbron disease in sheep, Onderstepoort J. Vet. Res. 28: 237–243.Google Scholar
  186. Liprandi, F., and Walder, R., 1983, Replication of virulent and attenuated strains of yellow fever virus in human monocytes and macrophage-like cell lines (4937), Arch. Virol. 76: 51–61.PubMedCrossRefGoogle Scholar
  187. Liu, C. T., and Griffin, M. J., 1982, Changes in body fluid compartments, tissue water and electrolyte distribution, and lipid concentrations in rhesus macaques with yellow fever, Am J. Vet. Res. 43: 2013–2018.PubMedGoogle Scholar
  188. Liu, J.-L., 1972, Protective effect of interferon on mice experimentally infected with Japanese encephalitis virus, Chinese J. Microbiol. 5: 1–9.Google Scholar
  189. Lloyd, W., 1931, The myocardium in yellow fever, Am. Heart J. 6: 504–516.CrossRefGoogle Scholar
  190. Lubiniecki, A. S., Cypress, R. H., and Hammon, W. McD., 1973, Passive immunity for arbovirus infection. I. Artificially acquired protection in mice for Japanese (B) encephalitis virus, Am. J. Trop. Med. Hyg. 22: 535–542.PubMedGoogle Scholar
  191. Lubiniecki, A. S., Cypress, R. H., and Lucas, J. P., 1974, Synergistic interaction of two agents in mice: Japanese B encephalitis virus and Trichinella spiralis, Am. J. Trop. Med. Hyg. 23: 235–241.Google Scholar
  192. MacDonald, F., 1952, Murray Valley encephalitis infection in the laboratory mouse. I. In- fluence of age on susceptibility to infection, Aust. J. Exp. Biol. Med. 30: 319–326.CrossRefGoogle Scholar
  193. Malkova, D., 1960, The role of the lymphatic system in experimental infections with tick-borne encephalitis. I. The tick-borne encephalitis virus in the lymph and blood of experimentally infected sheep, Acta Virol. 4: 233–240.PubMedGoogle Scholar
  194. Malkova, D., and Kolman, J. M., 1964, Role of the regional lymphocytic system of the immunized mouse in penetration of the tick-borne encephalitis virus into one blood strain, Acta Virol. 8: 10–13.PubMedGoogle Scholar
  195. Marburg, K., Goldblum, N., Sterk, V. V., Jasinka-Klingberg, W., and Klingberg, M. A., 1956, The natural history of West Nile fever. I. Clinical observations during an epidemic in Israel, Am. J. Hyg. 64: 259–269.Google Scholar
  196. Marchette, N. J., Halstead, S. B., Falkler, W. A., Jr., Stenhouse, A., and Nash, D., 1973, Studies on the pathogenesis of dengue infection in monkeys. III. Sequential distribution of virus in primary and heterologous infections, J. Infect. Dis. 128: 23–30.PubMedCrossRefGoogle Scholar
  197. Marker, S. C., and Jahrling, P. B., 1979, Correlation between virus—cell receptor properties of alphaviruses in vitro and virulence in vivo, Arch. Virol. 62: 53–62.CrossRefGoogle Scholar
  198. Marvin, J. A., Zvolanek, E. E., Nowosiwsky, T., and Greenberg, J. H., 1968, Tuberculin sensitivity)TINE) in apparently healthy subjects after yellow fever vaccination, Am. Rev. Respir. Dis. 98: 703–706.PubMedGoogle Scholar
  199. Mathur, A., Arora, K. L., and Chaturvedi, U. C., 1982, Transplacental Japanese encephalitis virus (JEV) infection in mice during consecutive pregnancies, J. Gen. Virol. 59: 213–217.PubMedCrossRefGoogle Scholar
  200. Mathur, A., Arora, K. L., and Chaturvedi, U. C., 1983a, Immune response to Japanese encephalitis virus in mother mice and their congenitally infected offspring, J. Gen. Virol. 64: 2027–2031.PubMedCrossRefGoogle Scholar
  201. Mathur, A., Arora, K. L., and Chaturvedi, U. C., 1983b, Host defense mechanisms against Japanese encephalitis virus infection in mice, J. Gen. Virol. 64: 805–811.PubMedCrossRefGoogle Scholar
  202. Mathur, A., Rawat, S., and Chaturvedi, U. C., 1983c, Induction of suppressor cells in Japanese encephalitis virus infected mice, Br. J. Exp. Pathol. 69: 336–343.Google Scholar
  203. Mathur, A., Rawat, S., and Chaturvedi, U. C., 1984, Suppressor T cells for delayed-type hypersensitivity to Japanese encephalitis virus, Immunology 52: 395–402.PubMedGoogle Scholar
  204. Mayer, V., Gajdosova, E., and Slavik, I., 1976, In vitro studies on cell-mediated immune response to tick-borne encephalitis virus: Findings in convalescents and human sub-clinical infections, Acta Virol. 20: 395–401.Google Scholar
  205. McFarland, R. I., and White, D. 0., 1980, Further characterization of natural killer cells induced by Kunjin virus, Aust. J. Exp. Biol. Med. Sci. 58: 77–89.CrossRefGoogle Scholar
  206. McFarland, H. F., Griffin, D. E., and Johnson, R. T., 1972, Specificity of the inflammatory response in viral encephalitis. I. Adoptive immunization of immunosuppressed mice infected with Sindbis virus, J. Exp. Med. 136: 216–226.PubMedCrossRefGoogle Scholar
  207. McIntosh, B. M., Jupp, P. G., Dos Santos, I., and Meenehan, G. M., 1976, Epidemics of West Nile and Sindbis viruses in South Africa with Culex (Culex) univittatus Theobold as vector, S. Afr. J. Sci. 72: 295–300.Google Scholar
  208. McKenzie, J. L., Dalchau, R., and Fabre, J. W., 1982, Biochemical characterization and localization in brain of a human brain—leucocyte membrane glycoprotein recognized by a monoclonal antibody, J. Neurochem. 39: 1461–1466.PubMedCrossRefGoogle Scholar
  209. Miller, C. A., and Benzer, S., 1983, Monoclonal antibody cross-reactions between Drosophila and human brain, Proc. Natl. Acad. Sci. U.S.A. 80: 7641–7645.PubMedCrossRefGoogle Scholar
  210. Mims, C. A., 1977, The Pathogenesis of Infectious Disease, Academic Press, New York. Mirovsky, J., Holub, J., and Nguyen-Ba-Can, 1962, The influence of dengue on pregnancy and fetus, Cesk. Pediatr. 17: 985–988 (in Czech).Google Scholar
  211. Mitchell, C. J., Gubler, D. J., and Monath, T. P., 1983, Variation in infectivity of St. Louis encephalitis viral strains for Culex pipiens quinquefasciatus (Diptera: Culicidae), J. Med. Entomol. 20: 526–533.PubMedGoogle Scholar
  212. Mitrakul, C., Poshyachinda, M., Futrakul, R, Sangkawibha, N., and Ahandrik, S., 1977, Hemostatic and platelet kinetic studies in dengue hemorrahagic fever, Am. J. Trop. Med. Hyg. 26: 975–984.PubMedGoogle Scholar
  213. Miyake, M., 1964, The pathology of Japanese encephalitis: A review, Bull. W.H.O. 30: 153–160.PubMedGoogle Scholar
  214. Moench, T. R., and Griffin, D. E., 1984, Immunocytochemical identification and quantification of the mononuclear cells in the cerebrospinal fluid, meninges, and brain during acute viral meningo-encephalitis, J. Exp. Med. 159: 77–88.PubMedCrossRefGoogle Scholar
  215. Monath, T. P., 1971, Neutralizing antibody response in the major immunoglobulin classes to yellow fever 17D vaccination of humans, Am. J. Epidemiol. 93: 122–129.PubMedGoogle Scholar
  216. Monath, T. P., 1980, Epidemiology, in: St. Louis Encephalitis ( T. P. Monath, ed.), pp. 239–312, American Public Health Association, Washington, D.C.Google Scholar
  217. Monath, T. P. C., and Borden, E. C., 1971, Effects of thorotrast on humoral antibody, viral multiplication, and interferon during infection with St. Louis encephalitis virus in mice, J. Infect. Dis. 123: 297–300.PubMedCrossRefGoogle Scholar
  218. Monath, T. P., Kemp, G. E., Cropp, C. B., and Bowen, G. S., 1978, Experimental infection of house sparrows (Passer domesticus) with Rocio virus, Am. J. Trop. Med. Hyg. 27: 1251–1254.PubMedGoogle Scholar
  219. Monath, T. P., Craven, R. B., Adjukiewicz, A., Germain, M., Francy, D. B., Ferrara, L., Samba, D. M., N’Jie, H., Cham, K., Fitzgerald, S. A., Crippen, P. H., Simpson, D. I. H., Bowen, E. T. W., Fabiyi, A., and Salaun, J.-J., 1980a, Yellow fever in the Gambia, 1978–1979: Epidemiologic aspects with observations on the occurrence of Orungo virus infections, Am. J. Trop. Med. Hyg. 29: 912–928.PubMedGoogle Scholar
  220. Monath, T. P., Cropp, C. B., Bowen, G. S., Kemp, G. E., Mitchell, C. J., and Gardner, J. J., 1980b, Variation in virulence for mice and rhesus monkeys among St. Louis encephalitis virus strains of different origin, Am. J. Trop. Med. Hyg. 29: 948–962.PubMedGoogle Scholar
  221. Monath, T. P., Brinker, K. R., Chandler, F. W., Kemp, G. E., and Cropp, C. B., 1981, Pathophysiologic correlations in a rhesus monkey model of yellow fever with special observations on the acute necrosis of B cell areas of lymphoid tissues, Am. J. Trop. Med. Hyg. 30: 431–443.PubMedGoogle Scholar
  222. Monath, T. P., Cropp, C. B., and Harrison, A. K., 1983, Mode of entry of a neurotropic arbovirus into the central nervous system: Reinvestigation of an old controversy, Lab. Invest. 48: 399–410.PubMedGoogle Scholar
  223. Monath, T. P., Nystrom, R. R., Bailey, R. E., Muth, D. J., and Calisher, C. H., 1984, IgM antibody capture ELISA for diagnosis of St. Louis encephalitis, J. Clin. Microbiol. 20: 784–790.PubMedGoogle Scholar
  224. Murphy, F. A., 1979, Viral pathogenetic mechanisms, in: Mechanisms of Viral Pathogenesis and Virulence ( P. A. Bachmann, ed.), pp. 7–19, WHO Collaborating Center for Collection and Evaluation of Data on Comparative Virology, Munich.Google Scholar
  225. Murphy, F. A., Harrison, A. K., Gary, F. W., Jr., Whitfield, S. G., and Forrester, F. T., 1968, St. Louis encephalitis virus infection of mice: Electron microscopic studies of the central nervous system, Lab. Invest. 19: 652–662.PubMedGoogle Scholar
  226. Museteanu, C., Welte, M., Henneberg, G., and Haase, J., 1979, Relation between decreased mental efficiency in mice and the presence of cerebral lesions after experimental encephalitis caused by yellow fever virus, J. Infect. Dis. 139: 320–323.PubMedCrossRefGoogle Scholar
  227. Nagarkatti, M., and Nagarkatti, P. S., 1979, Suppression of intrinsic B cell function in dengue infected mice, Experientia 35: 1518–1519.PubMedCrossRefGoogle Scholar
  228. Nagarkatti, M., Nagarkatti, P. S., and Rao, K. M., 1980, Effects of experimental dengue virus infection on humoral and cell-mediated immune response to thymus-dependent antigen, Int. Arch. Allergy Appl. Immunol. 62: 361–369.PubMedCrossRefGoogle Scholar
  229. Nagarkatti, P. S., and Nagarkatti, M., 1983, Effect of experimental dengue virus infection on immune response of the host. I. Nature of changes in T suppressor cell activity regulating the B and T cell responses to heterologous antigens, J. Gen. Virol. 64: 1441–1447.PubMedCrossRefGoogle Scholar
  230. Nagarkatti, P. S., D’Souza, M. B., and Rao, K. M., 1978, Use of sensitized spleen cells in capillary tube migration inhibition tests to demonstrate cellular sensitization to dengue virus in mice, J. Immunol. Methods 23: 341–348.CrossRefGoogle Scholar
  231. Nathanson, N., 1980, Pathogenesis, in: St. Louis Encephalitis ( T. P. Monath, ed.), pp. 201–236, American Public Health Association, Washington, D.C.Google Scholar
  232. Nathanson, N., and Harrington, B., 1967, Experimental infection of monkeys with Langat virus. II. Turnover of circulating virus, Am. J. Epidemiol. 85: 494–503.PubMedGoogle Scholar
  233. Nathanson, N., Davis, M., Thind, I. S., and Price, W. H., 1966, Histological studies of the neurovirulence of group B arboviruses. II. Selection of indicator centers, Am. J. Epidemiol. 84: 524–540.PubMedGoogle Scholar
  234. Nawrocka, E., 1975, Characteristics of tick-borne encephalitis virus circulating in Poland, Acta Microbiol. Pol. Ser. A 7: 237–245.Google Scholar
  235. Nelson, E. R., Bierman, H. R., and Chulajata, R., 1964, Hematologic findings in the 1960 hemorrhagic fever epidemic (dengue) in Thailand, Am. J. Trop. Med. Hyg. 13: 642–649.PubMedGoogle Scholar
  236. Nolan, J. P., 1981, Endotoxin, reticuloendothelial function, and liver injury, Hepatology 1: 458–465.PubMedCrossRefGoogle Scholar
  237. Nosek, J., Gresikova, M., and Rehacek, J., 1960, Persistence of tick-borne encephalitis virus in hibernating bats, in: Biology of Viruses of the Tick-Borne Encephalitis Complex ( H. Libikova, ed.), pp. 394–396, Academic Press, New York.Google Scholar
  238. Oaten, S. W., Webb, H. E., and Bowen, E. T. W., 1976, Enhanced resistance of mice to infection with Langat (TP21) virus following pre-treatment with Sindbis or Semliki Forest virus, J. Gen. Virol. 23: 381–388.CrossRefGoogle Scholar
  239. Oaten, S. W., Webb, H. E., and Jagelman, S., 1980, Resistance of mice to infection with West Nile virus following pre-treatment with Sindbis, Semliki Forest and chikungunya viruses, Microbios Lett. 13: 85–90.Google Scholar
  240. Odelola, H. A., and Fabiyi, A., 1978, Kinetic haemagglutination-inhibition technique as a means of detecting antigenic variations among strains of Nigerian flaviviruses, Arch. Virol. 56: 291–295.PubMedCrossRefGoogle Scholar
  241. Ogasa, A., Yokoki, Y., Fujisaki, Y., and Habu, A., 1977, Reproductive disorders in boars infected experimentally with Japanese encephalitis virus, Jpn. J. Anim. Reprod. 23: 171–175.CrossRefGoogle Scholar
  242. Ogawa, M., Okubo, H., Tsuji, Y., Yasui, N., and Someda, K., 1973, Chronic progressive encephalitis occurring 13 years after Russian spring summer encephalitis, J. Neurol. Sci. 19: 363–373.PubMedCrossRefGoogle Scholar
  243. O’Leary, J. L., Smith, M. G., and Reames, H. R., 1942, Influence of age on susceptibility of mice to St. Louis encephalitis virus and on the distribution of lesions, J. Exp. Med. 75: 233–247.PubMedCrossRefGoogle Scholar
  244. Olson, L. C., Sithisarn, P., and Djinawi, N. K., 1975, Role of macrophages in Wesselsbron and Germiston virus infections of mice, J. Infect. Dis. 131: 119–127.PubMedCrossRefGoogle Scholar
  245. Oudart, J.-L., and Rey, M., 1970, Proteinurie, proteinémie, et transaminasemies dans 23 cas de fièvre jaune confirmées, Bull. W.H. O. 42: 95–102.Google Scholar
  246. Pang, T., 1983, Delayed type hypersensitivity: Probable role in the pathogenesis of dengue hemorrhagic fever/dengue shock syndrome, Rev. Infect. Dis. 5: 346–352.PubMedCrossRefGoogle Scholar
  247. Pang, T., Wong, P. Y., and Pathmanathan, R., 1982, Induction and characterization of delayed type hypersensitivity to dengue virus in mice, J. Infect. Dis. 146: 235–242.PubMedCrossRefGoogle Scholar
  248. Pang, T., Devi, S., Yeen, W. P., McKenzie, I. F. C., and Leong, Y. K., 1984, Lyt phenotype and H-2 compatability requirements of effector cells in the delayed-type hypersensitivity response to dengue virus infection, Infect. Immun. 43: 429–431.PubMedGoogle Scholar
  249. Parks, J. J., Ganaway, J. R., and Price, W. H., 1958, Studies on immunologic overlap among certain arthropod-borne viruses. III. A laboratory analysis of three strains of West Nile virus which have been studied in human cancer patients, Am. J. Hyg. 68: 106–119.PubMedGoogle Scholar
  250. Pavri, K. M., and Prasad, S. R., 1980, T suppressor cells: Role in dengue hemorrhagic fever and dengue shock syndrome, Rev. Infect. Dis. 2: 142–146.PubMedCrossRefGoogle Scholar
  251. Pavri, K. M., Ghalsasi, G. R., Dastur, D. K., Goverdhan, M. K., and Lalitha, V. S., 1975, Dual infections of mice: Visceral larva migrans and sublethal infections with Japanese encephalitis virus, Trans. R. Soc. Trop. Med. Hyg. 69: 99–110.PubMedCrossRefGoogle Scholar
  252. Pavri, K. M., Swe Than, Ramamoorthy, C, L., and Chodankar, V. P., 1979, Immunoglobulin E in dengue hemorrhagic fever (DHF) cases, Trans. R. Soc. Trop. Med. Hyg. 73: 451452.Google Scholar
  253. Pavri, K. M., Ramamoorthy, C. L., and Dhorje, S., 1980, Immunoglobulin E in patients with Japanese encephalitis, Infect. Immun. 28: 290–291.Google Scholar
  254. Peck, J. L., Jr., and Sabin, A. B., 1947, Multiplication and spread of the virus of St. Louis encephalitis in mice with special emphasis on its fate in the alimentary tract, J. Exp. Med. 85: 647–662.PubMedCrossRefGoogle Scholar
  255. Peins, J. S. M., and Porterfield, J. S., 1979, Antibody mediated enhancement of flavivirus replication in macrophage-like cell lines, Nature (London) 282: 509–511.CrossRefGoogle Scholar
  256. Penna, H. A., and Bittencourt, A., 1943, Persistence of yellow fever virus in brains of monkeys immunized by cerebral inoculation, Science 97: 448–449.PubMedCrossRefGoogle Scholar
  257. Perelman, A., and Stern, J., 1974, Acute pancreatitis is West Nile fever, Am. J. Trop. Med. Hyg. 23: 1150–1152.PubMedGoogle Scholar
  258. Perelmutter, L., Phipps, P., and Potvin, L., 1978, Viral infections and IgE levels, Ann. Allergy 41: 158–159.PubMedGoogle Scholar
  259. Phillpotts, R. J., Stephenson, J. R., and Porterfield, J. S., 1985, Antibody dependent enhancement of tick-borne encephalitis infectivity, J. Gen. Virol. 66: 1831–1837.PubMedCrossRefGoogle Scholar
  260. Pogodina, V. V., Frolova, M. P., Malenko, G. V., Fokina, G. I., Levina, C. S., Mamonenko, L. L., Koreshkova, G. V., and Ralf, N. M., 198la, Persistence of tick-borne encephalitis virus in monkeys. I. Features of experimental infection, Acta Virol. 25: 337–343.Google Scholar
  261. Pogodina, V. V., Levina, L. S., Fokina, G. I., Koreshkova, G. V., Malenko, G. V., Bochkova, N. A., and Rzhakhova, 0., 198 lb, Persistence of tick-borne encephalitis virus in monkeys. III. Phenotypes of the persisting virus, Acta Virol. 25: 352–360.Google Scholar
  262. Pogodina, V. V., Frolova, M. P., Malenko, G. V., Fokina, G. I., Koreshkova, L. L., Kiseleva, N. G., Bochkova, N. G., and Ralph, N. M., 1983, Study of West Nile virus persistence in monkeys, Arch. Virol. 75: 71–86.PubMedCrossRefGoogle Scholar
  263. Pongpanich, B., and Kumponpant, S., 1973, Studies of dengue hemorrhagic fever. V. Hemodynamic studies of clinical shock associated with dengue hemorrhagic fever, J. Pediatr. 83: 1073–1077.PubMedCrossRefGoogle Scholar
  264. Price, W. H., 1966, Chronic disease and virus persistence in mice inoculated with Kyasanur Forest disease virus, Virology 29: 679–681.PubMedCrossRefGoogle Scholar
  265. Putvatana, R., Yoksan, S., Chayaydohin, T., Bhamarapravati, N., and Halstead, S., 1984, Absence of dengue 2 infection enhancement in human sera containing Japanese encephalitis, Am. J. Trop. Med. Hyg. 33: 288–294.PubMedGoogle Scholar
  266. Reeves, W. C., Bellamy, R. E., and Scrivani, R. P., 1958, Relationships of mosquito vectors to winter survival of encephalitis viruses. I. Under natural conditions, Am. J. Hyg. 67: 78–89.PubMedGoogle Scholar
  267. Reid, H. W., 1975, Experimental infection of red grouse with louping ill virus (flavivirus group). I. The viraemia and antibody response, J. Comp. Pathol. 85: 223–229.PubMedCrossRefGoogle Scholar
  268. Reid, H. W., and Doherty, P. C., 1971, Louping ill encephalomyelitis in the sheep. I. The relationship of viremia and the antibody response to susceptibility, J. Comp. Pathol. 81: 521–527.PubMedCrossRefGoogle Scholar
  269. Reid, H. W., and Moss, R., 1980, The response of four species of birds to louping ill, in: Arbovirus in the Mediterranean Countries (J. Vesenjak-Hirjan, J. S. Porterfield, and E. Arslanagic,), Abh. Bakteriol. Suppl. 9:219–223, Gustav Fischer Verlag, Stuttgart.Google Scholar
  270. Reid, H. W., Doherty, P. C., and Dawson, A. M., 1971, Louping ill encephalomyelitis in the sheep. III. Immunoglobulins in cerebrospinal fluid, J. Comp. Pathol. 81: 537–543.PubMedCrossRefGoogle Scholar
  271. Reid, H. W., Buxton, D., Pow, I., and Finlayson, J., 1982, Experimental louping ill virus infection in two species of British deer, Vet. Rec. 111: 61.PubMedCrossRefGoogle Scholar
  272. Repik, P. M., Dalrymple, J. M., Brandt, W. E., McCown, J. M., and Russell, P. K., 1983, RNA fingerprinting as a method for distinguishing dengue 1 virus strains, Am. J. Trop. Med. Hyg. 32: 577–589.PubMedGoogle Scholar
  273. Reyes, M. G., Gardner, J. J., Poland, J. D., and Monath, T. P., 1981, St. Louis encephalitis: Quantitative histologic and immunofluorescent studies, Arch. Neurol. 38: 329–334.PubMedCrossRefGoogle Scholar
  274. Roehrig, J. T., Mathews, J. H., and Trent, D. W., 1983, Identification epitopes on the E glycoprotein of St. Louis encephalitis virus using monoclonal antibodies, Virology 128: 118–126.Google Scholar
  275. Rosemberg, S., 1977, Neuropathological study of a new viral encephalitis: The encephalitis of Sao Paulo South Coast, Rev. Inst. Med. Trop. Sao Paulo 19: 280–282.PubMedGoogle Scholar
  276. Rubenstein, D., Wheelock, E. F., and Tyrrell, D. A. J., 1972, The growth of arboviruses in organ culture of mouse meninges and the influence on in vitro virus growth of previous vaccination, Proc. Soc. Exp. Biol. Med. 140: 1123–1126.PubMedGoogle Scholar
  277. Russell, P. K., and Brandt, W. E., 1973, Immunopathologic processes and viral antigens associated with sequential dengue virus infection, Perspect. Virol. 7: 263–277.Google Scholar
  278. Sagamata, M., and Miura, T., 1982, Japanese encephalitis virus infection in fetal mice at different stages of pregnancy. I. Stillbirth, Acta Virol. 26: 279–282.Google Scholar
  279. Sahaphong, S., Riengrojpitak, S., Bhamarapravati, N., and Chirachariyavej, T., 1980, Electron microscopic study of the vascular endothelial cell in dengue hemorrhagic fever, Southeast Asian J. Trop. Med. Public Health 11: 194–211.PubMedGoogle Scholar
  280. Sanders, M., Blumberg, A., and Haymaker, W., 1953, Polyradiculopathy in man produced by St. Louis encephalitis virus ISLE), South. Med. J. 46: 606–611.PubMedCrossRefGoogle Scholar
  281. Sangkawibha, N., Rojanasuphot, S., Ahandrik, S., Viriyapongse, S., Jatanasen, S., Salitul, V., Phanthumachinda, B., and Halstead, S. B., 1984, Risk factors in dengue shock syndrome: A prospective epidemiologic study in Rayong, Thailand. I. The 1980 outbreak, Am. J. Epi d em i ol. 120: 653–669.Google Scholar
  282. Santos, F., Lima, C. P., Paiva, M., Costa e Silva, M., and Nery de Castro, C., 1973, Coagulacao intravascular disseminada aguda na febre amarela: Dosagem dos fatores da coagulacao, Bras.-Med. 9: 9–16.Google Scholar
  283. Santos Lagresa, M. N., Villaescusa, R., Ballester, J. M., and Hernandez, P., 1983, Indomethacin-mediated enhancement of lymphocyte response to phytohemagglutinin in dengue haemorrhagic fever patients, Br. J. Haematol. 55: 379–380.PubMedCrossRefGoogle Scholar
  284. Schlesinger, J. J., and Brandriss, M. W., 1981, Growth of 17D yellow fever virus in a macrophage-like cell line U937: Role of Fc and viral receptors in antibody mediated infection, Immunol. 127: 659–665.Google Scholar
  285. Schlesinger, R. W., 1977, The Dengue Viruses. Virology Monographs, Vol. 16, Springer-Verlag, Vienna and New York.Google Scholar
  286. Schlesinger, R. W., 1980, Virus—host interactions in natural and experimental infections with alphaviruses and flaviviruses, in: The Togaviruses ( R. W. Schlesinger, ed.), pp. 83106, Academic Press, New York.Google Scholar
  287. Scott, R. McN., Nisalak, A., Cheamudon, U., Seridhoranakul, S., and Nimmannitya, S., 1980, Isolation of dengue viruses from peripheral blood leukocytes of patients with hemorrhagic fever, J. Infect. Dis. 141: 1–6.PubMedCrossRefGoogle Scholar
  288. Seamer, J., and Peto, S., 1969, A method of assessment of central nervous function in mice with viral encephalomyelitis, Lab. Anim. 3: 129–140.CrossRefGoogle Scholar
  289. Semenov, B. F., Khozinsky, V. V., and Vargin, V. V., 1975, The damaging action of cellular immunity in flavivirus infections of mice, Med. Biol. 53: 331–336.PubMedGoogle Scholar
  290. Shaikh, B. H., Pavri, K. M, Ramamoorthy, C. L., Verma, S. P., and Deuskar, N. J., 1983, Total serum immunoglobulins in Japanese encephalitis patients with high IgE levels in acute phase, Indian J. Med. Res. 77: 765–769.PubMedGoogle Scholar
  291. Shankar, S. K., Rao, T. V., Mruthyun-Jayanna, B. P., Devi, M. G., and Deshpande, D. H., 1983, Autopsy study of brains during an epidemic of Japanese encephalitis in Karnataka, India, Indian J. Med. Res. 78: 431–440.PubMedGoogle Scholar
  292. Sheahan, B. J., Gates, M. C., Caffrey, J. F., and Atkins, G. J., 1983, Oligodendrocyte infection and demyelination produced in mice by the M9 mutant of Semliki Forest virus, Acta Neurop a th ol. 60: 257–265.Google Scholar
  293. Sheets, P., Schwartz, A., Jacoby, R. O., and Bhatt, P. N., 1979, T cell-mediated cytotoxicity for L929 fibroblasts infected with Banzi virus (flavivirus), J. Infect. Dis. 140: 384–391.PubMedCrossRefGoogle Scholar
  294. Shukla, M. I., and Chaturvedi, U. C., 1982, In vivo role of macrophages in transmission of dengue virus-induced suppressor signal to T lymphocytes, Br. J. Exp. Pathol. 63: 522–530.Google Scholar
  295. Shukla, M. I., and Chaturvedi, U. C., 1983, Transmission of dengue-virus induced suppressor signal from macrophage to lymphocyte occurs by cell contact, Br. J. Exp. Pathol. 64: 87–92.PubMedGoogle Scholar
  296. Shukla, M. I., and Chaturvedi, U. C., 1984, Study of the target cell of the dengue virus-induced suppressor signal, Br. J. Exp. Pathol. 65: 267–273.PubMedGoogle Scholar
  297. Shukla, M. I., Dalakoti, H., and Chaturvedi, U. C., 1982, Ly phenotype of T lymphocytes producing dengue virus-induced immunosuppressive factors, Indian J. Exp. Biol. 20: 525–528.PubMedGoogle Scholar
  298. Sipos, J., Ribiczey, P., Gabor, V., Toth, Z., and Bartok, K., 1981, Investigations on blood and cerebrospinal fluid lymphocytes in patients suffering from tick-borne encephalitis, Infection 9: 258–263.PubMedCrossRefGoogle Scholar
  299. Smith, A., 1981, Genetic resistance to lethal flavivirus encephalitis: Effect of host age and immune status and route of inoculation on production of interfering Banzi virus in vivo, Am. J. Trop. Med. Hyg. 30: 1319–1323.Google Scholar
  300. Smith, A. L., and Jacoby, R. 0., 1986, Immune responses of mice genetically resistant or susceptible to lethal Banzi virus infection (in prep.).Google Scholar
  301. Smith, J. A., Francis, T. I., and David-West, T. S., 1973, Auto-antibodies in acute viral hepatitis, yellow fever, and hepatocellular carcinoma: Clinical and experimental findings, J. Pathol. 109: 83–91.PubMedCrossRefGoogle Scholar
  302. Srichaikul, T., Nimmannitya, S., Artchararit, N., Siriasawakul, T., and Sungpeuk, P., 1977, Fibrinogen metabolism and disseminated intravascular coagulation in dengue hemorrhagic fever, Am. J. Trop. Med. Hyg. 26: 525–532.PubMedGoogle Scholar
  303. Stefanopoulo, G. J., and Mollaret, P., 1934, Hemiplegie d’origine cerebrale et névrite optique en cours d’un cas de fièvre jaune, Bull. Mem. Soc. Med. Hop. (Paris) 50: 1463–1466.Google Scholar
  304. Stephenson, J. R., Lee, J. M., and Wilton-Smith, P. D., 1984, Antigenic variation among members of the tick-borne encephalitis complex, J. Gen. Virol. 63: 81–89.CrossRefGoogle Scholar
  305. Stephenson, L. D., 1939, Pathologic changes in nervous system in yellow fever, Arch. Pathol. 27: 249–266.Google Scholar
  306. Stollar, V., 1980, Togaviruses in cultured arthropod cells, in: The Togaviruses: Biology, Structure, Replication ( R. W. Schlesinger, ed.), pp. 584–622, Academic Press, New York.Google Scholar
  307. Stollar, V., and Shenk, T. E., 1973, Homologous viral interference in Aedes albopictus cultures chronically infected with Sindbis virus, J. Virol. 11: 592–595.PubMedGoogle Scholar
  308. Suckling, A J., Pathak, S., Jagelman, S., and Webb, H. E., 1978, Virus-associated demyelination: A model using avirulent Semliki Forest virus infection of mice, J. Neurol. Sci. 39: 147–154.PubMedCrossRefGoogle Scholar
  309. Sugawa, Y., Hiroshi, M., and Yamamoto, S., 1949, Histopathological studies on naturally affected horses with Japanese encephalitis, Bull. Natl. Inst. Anim. Health (Tokyo) 22: 9–25.Google Scholar
  310. Sulkin, S. E., and Allen, R., 1974, Virus infections in bats, Monogr. Virol. 8: 1–103.PubMedGoogle Scholar
  311. Sulkin, S. H., Harford, C. G., and Bronfenbrenner, J. J., 1939, Immunization of mice by intranasal instillation of nasopharyngeal washings from cases of St. Louis encephalitis, Proc. Soc. Exp. Biol. Med. 41: 427–429.Google Scholar
  312. Sulkin, S. E., Sims, R., and Allen, R., 1966, Studies of arthropod-borne virus infections in Chiroptera. II. Experiments with Japanese B and St. Louis encephalitis in the gravid bat and evidence for transplacental transmission, Am. J. Trop. Med. Hyg. 13: 475–481.Google Scholar
  313. Sumarmo, Wilur, H., Jahja, E., Gubler, D. J., Suharyono, W., and Sorenson, K., 1983, Clinical observations on virologically confirmed fatal dengue infections in Jakarta, Indonesia, Bull. W.H.O. 61: 693–701.Google Scholar
  314. Suzuki, M., Simizu, B., Yabe, S., Oya, A., and Seto, H., 1981, Effect of cadmium on Japanese encephalitis virus infection in mice. I. Acute and single-dose exposure experiment, Toxicol. Lett. 9: 231–235.PubMedCrossRefGoogle Scholar
  315. Tamura, H., Koyama, T, Kuwanizu, I., Nakamura, I., Erna, M., and Miura, T., 1977, Effect of methylmercury chloride and Japanese encephalitis virus infection on fetus of hamsters, Med. Biol. 9: 161–164.Google Scholar
  316. Tandon, P., Chaturvedi, U. C., and Mathur, A., 1979a, Differential depletion of T lymphcytes in the speen of dengue virus-infected mice, Immunology 37: 1–6.PubMedGoogle Scholar
  317. Tandon, P., Chaturvedi, U. C., and Mathur, A., 1979b, Dengue virus induced thymus-derived suppressor cells in the spleens of mice, Immunology 38: 653–658.PubMedGoogle Scholar
  318. Tarr, G. C., and Hammon, W. McD., 1974, Cross-protection between group B arboviruses: Resistance in mice to Japanese B encephalitis and St. Louis encephalitis viruses induced by dengue virus immunizations, Infect. Immun 9. 909–915.PubMedGoogle Scholar
  319. Theiler, M., 1951, The virus, in Yellow Fever ( G. K. Strode, ed.), pp. 39–136, McGraw-Hill, New York.Google Scholar
  320. Theiler, M., and Anderson, C. R., 1975, The relative resistance of dengue-immune monkeys to yellow fever virus, Am. J. Trop. Med. Hyg. 24: 115–117.PubMedGoogle Scholar
  321. Theofilopoulos, A. N., Brandt, W. E., Russell, P. K., and Dixon, F. J., 1976, Replication of dengue 2 virus in cultured human lymphoblastoid cells and subpopulations of human peripheral leukocytes, J. Imm unol. 117: 953–961.Google Scholar
  322. Thind, I. S., and Singh, N. P., 1977, Potentiation of Langat virus infection by lead intoxication—influence on host defenses, Acta Virol. 21: 317–325.PubMedGoogle Scholar
  323. Tigertt, W. D., Berge, T. O., Gochenour, W. S., Gleiser, C. A., Eveland, W. D., Vorder Bruegge, C., and Smetana, H. F., 1960, Experimental yellow fever, Trans. N.Y. Acad. Sci. 22: 323–333.CrossRefGoogle Scholar
  324. Tignor, G. H., Smith, A. L., and Shope, R. E., 1984, Utilization of host proteins as virus receptors, in: Concepts in Viral Pathogenesis ( A. L. Notkins and M. B. A. Oldstone, eds.), pp. 109–116, Springer-Verlag, New York.CrossRefGoogle Scholar
  325. Trent, D. W., Monath, T. P., Bowen, G. S., Vorndam, A. V., Cropp, C. B., and Kemp, G. E., 1980, Variation among strains of St. Louis encephalitis virus: Basis for a genetic, pathogenetic and epidemiologic classification, Ann. N. Y. Acad. Sci. 354: 219–237.PubMedCrossRefGoogle Scholar
  326. Trent, D. W., Grant, J. A., Vorndam, A. V., and Monath, T. P., 1981, Genetic heterogeneity among St. Louis encephalitis virus isolates of different geographic origin, Virology 114: 319–332.PubMedCrossRefGoogle Scholar
  327. Tuchinda, M., Dhorranintra, B., and Tuchinda, P., 1977, Histamine content in 24-hour urine in patients with dengue hemorrhagic fever, Southeast Asian J. Trop. Med. Public Health 8: 80–83.PubMedGoogle Scholar
  328. Umrigar, M. D., and Pavri, K. M., 1977, Comparative biological studies on Indian strains of West Nile virus isolated from different sources, Indian J. Med. Res. 65: 596–602.PubMedGoogle Scholar
  329. Vereta, L. A., Ostrorskaya, O. V., Kikolaeva, S. P., and Pukhovskaya, N. M., 1983, Detection of natural heterogeneity of natural tick-borne encephalitis virus populations and grouping of strains, Vopr. Virusol. 28: 706–710 (in Russian).PubMedGoogle Scholar
  330. Vince, V., and Grcevic, N., 1969, Development of morphological changes in experimental tick-borne meningoencephalitis induces in white mice by different virus doses, J. Neurol. Sci. 9: 109–130.PubMedCrossRefGoogle Scholar
  331. Vorndam, A. V., 1980, Immunization, in: St. Louis Encephalitis ( T. P. Monath, ed.), pp. 623–635, American Public Health Association, Washington, D.C.Google Scholar
  332. Warren, A. J., 1951, Landmarks in the conquest of yellow fever, in: Yellow Fever ( G. K. Strode, ed.), pp. 6–37, McGraw-Hill, New York.Google Scholar
  333. Webb, H. E., Wight, D. G. D., and Wiemik, G., 1968, Langat virus encephalitis in mice. II. The effect of irradiation, J. Hyg. 66: 355–364.CrossRefGoogle Scholar
  334. Webb, H. E., Mehta, S., Gregson, N. A., and Leibowitz, S., 1984, Immunological reaction of the demyelinating Semliki Forest virus with immune serum to glycolipids and its possible importance to central nervous system viral autoimmune disease, Neuropathol. Appl. Neurobiol. 10: 77–84.PubMedCrossRefGoogle Scholar
  335. Webb, J. K. G., and Pereira, S., 1956, Clinical diagnosis of an arthropod-borne type of encephalitis in children of North Arcot District, Madras State, India, Indian J. Med. Sci. 10: 573–581.Google Scholar
  336. Weiner, L. P., Cole, G. A., and Nathanson, N., 1970, Experimental encephalitis following peripheral inoculation of West Nile virus in mice of different ages, J. Hyg. 68: 435–446.CrossRefGoogle Scholar
  337. Wheelock, E. F., and Edelman, R., 1969, Specific role of each human leukocyte type in viral infections. III. 17D yellow fever virus replication and interferon production in homogenous leukocyte cultures treated with phytohemagglutinin, J. Immunol. 103: 429–436.PubMedGoogle Scholar
  338. Wheelock, E. F., Toy, S. T., and Stjernholm, R. L., 1970, Lymphocytes and yellow fever. I. Transient virus refractory state following vaccination of man with the 17D strain, J. Immunol. 105: 1304–1306.PubMedGoogle Scholar
  339. Wong, P. Y., Devi, S., McKenzie, F. C., Yap, Y. L., and Pang, T., 1984, Induction and Ly phenotype of suppressor T cells in mice during primary infection with dengue virus, Immunology 51: 51–56.PubMedGoogle Scholar
  340. Wood, C. S., 1976, ABO blood groups related to selection of human hosts by yellow fever vectors, Hum. Biol. 48: 337–341.PubMedGoogle Scholar
  341. Woodall, J. P., and Roz, A., 1977, Experimental milk-borne transmission of Powassan virus in the goat, Am. J. Trop. Med. Hyg. 26: 190–192.PubMedGoogle Scholar
  342. World Health Organization, 1971, Third Report, Expert Committee on Yellow Fever, WHO Tech Rep. Ser. No. 479, Geneva.Google Scholar
  343. World Health Organization, 1973, Pathogenesis mechanisms in dengue hemorrhagic fever: Report of an international collaborative study, Bull. W.H.O. 58: 117–123.Google Scholar
  344. Yamamoto, M., and Hotta, S., 1981, Response of human leucocytes to yellow fever virus infection in vitro, Kobe J. Med. Sci. 27: 165–172.Google Scholar
  345. Zilber, L. A., 1960, Pathogenicity of Far East and Western (European) tick-borne encephalitis viruses in sheep and monkeys, in: Biology of Viruses of the Tick-Borne Encephalitis Complex ( H. Libikova, ed.), pp. 260–264, Academic Press, New York.Google Scholar
  346. Zisman, B., Wheelock, E. F., and Allison, A. C., 1971, Role of macrophages and antibody in resistance of mice against yellow fever virus, J. Immunol. 107: 236–243.PubMedGoogle Scholar
  347. Zlotnik, I., and Grant, D. P., 1976, Further observations on subacute sclerosing encephalitis in adult hamsters: The effects of intranasal infections with Langat virus, measles virus and SSPE-measles virus, Br. J. Exp. Pathol. 57: 49–66.PubMedGoogle Scholar
  348. Zlotnik, I., Smith, C. E. G., Grant, D. P., and Peacock, S., 1970, The effect of immunosuppression on viral encephalitis with special reference to cyclophosphamide, Br. J. Exp. Pathol. 51: 434–439.PubMedGoogle Scholar
  349. Zlotnik, I., Grant, D. P., Carter, G. B., and Batter-Hatton, D., 1973, Subacute sclerosing encephalitis in adult hamsters infected with Langat virus, Br. J. Exp. Pathol. 54: 29–39.PubMedGoogle Scholar
  350. Zlotnik, I., Grant, D. P., and Carter, G. B., 1976, Experimental infection of monkeys with viruses of the tick-borne encephalitis complex: Degenerative cerebellar lesions following inapparent forms of the disease or recovery from clinical encephalitis, Br. J. Exp. Pathol. 57: 200–210.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Thomas P. Monath
    • 1
  1. 1.Division of Vector-Borne Viral Diseases, Center for Infectious Diseases, Centers for Disease Control, Public Health Service, U.S.Department of Health and Human ServicesFort CollinsUSA

Personalised recommendations