Replication of Flaviviruses

  • Margo A. Brinton
Part of the The Viruses book series (VIRS)

Abstract

Flaviviruses were classified as members of the togavirus family until 1984, when the International Committee for the Nomenclature of Viruses voted to make Flaviviridae a separate family (Westaway et al., 1986). The togavirus family had originally been defined using morphological criteria. The change in classification was the result of recent research that clearly demonstrated that flaviviruses, although generally similar to alphaviruses in their morphology, differ markedly from the alpha togaviruses in their virion structure, strategy of replication, and morphogenesis.

Keywords

West Nile Virus Dengue Virus Encephalitis Virus Japanese Encephalitis Virus Yellow Fever Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ahlquist, P., Strauss, E. G., Rice, C. M., Strauss, J. H., Haseloff, J., and Zimmern, D., 1985, Sindbis virus proteins ns P1 and ns P2 contain homology to nonstructural proteins from several RNA plant viruses, J. Virol. 53: 536.PubMedGoogle Scholar
  2. Andzhaparidze, O. G., Rozina, E. E., Bogomolova, N. N., and Boriskin, Yu. S., 1978, Morphological characteristics of the infection of animals with tick-borne encephalitis virus persisting for a long time in cell cultures, Acta Virol. 22: 218.PubMedGoogle Scholar
  3. Asher, D. M., 1979, Persistent tick-borne encephalitis infection in man and monkeys: Relation to chronic neurologic disease, in: Artic and Tropical Arboviruses: Proceedings of the 2nd International Symposium on Artic Arboviruses, Mont Gabriel, Canada, pp. 179 - 195, Academic Press, New York.Google Scholar
  4. Baron, M. H., and Baltimore, D., 1982, Purification and properties of a host cell protein required for poliovirus RNA replication in vitro, J. Biol. Chem. 257: 12, 351.Google Scholar
  5. Beasley, A. R., Lichter, W., and Sigel, M. M., 1960, Studies on latent infections of tissue cultures with dengue virus. Arch. Virusforsch. 10: 672.CrossRefGoogle Scholar
  6. Bell, J. R., Kinney, R. M., Trent, D. W., Lenches, E. M., Dalgarno, L., and Strauss, J. H., 1985, Amino-terminal amino acid sequences of structural proteins of three flaviviruses, Virology 143: 224.PubMedCrossRefGoogle Scholar
  7. Boulton, R. W., and Westaway, E. G., 1976, Replication of the flavivirus Kunjin: Proteins, glycoproteins and maturation associated with cell membranes, Virology 69: 416.PubMedCrossRefGoogle Scholar
  8. Brandriss, M. W., and Schlesinger, J. J., 1984, Antibody-mediated infection of P388D1 cells with 17D yellow fever virus: Effects of chloroquine and cytochalasin B, J. Gen. Virol. 65: 791.PubMedCrossRefGoogle Scholar
  9. Brandt, W. E., McCown, J. M., Top, F. H., Jr., Bancroft, W. H., and Russell, P. K., 1979, Effect of passage history on dengue-2 virus replication in subpopulations of human leukocyte, Infect. Immun. 26: 534.PubMedGoogle Scholar
  10. Brandt, W. E., McCown, J. M., Gentry, M. K., and Russell, P. K., 1982, Infection enhancement of dengue type 2 virus in the U-937 human monocyte cell line by antibodies to flavivirus cross-reactive determinants, Infect Immun. 36: 1036.PubMedGoogle Scholar
  11. Brawner, T. A., Trousdale, M. O., and Trent, D. W., 1979, Cellular localization of Saint Louis encephalitis virus RNA replication, Acta Virol. 23: 284.PubMedGoogle Scholar
  12. Brinton, M. A., 1981, Isolation of a replication-efficient mutant of West Nile virus from a persistently infected genetically resistant mouse cell culture, J. Virol. 39: 413.PubMedGoogle Scholar
  13. Brinton, M. A., 1982, Characterization of West Nile virus persistent infections in genetically resistant and susceptible mouse cells. I. Generation of defective nonplaquing virus particles, Virology 116: 84.PubMedCrossRefGoogle Scholar
  14. Brinton, M. A., 1983, Analysis of extracellular West Nile virus particles produced by cell cultures from genetically resistant and susceptible mice indicates enhanced amplification of defective interfering particles by resistant cultures, J. Virol. 46: 860.PubMedGoogle Scholar
  15. Brinton, M. A., and Fernandez, A. V., 1983, A replication-efficient mutant of West Nile virus is insensitive to DI particle interference, Virology 129: 107.PubMedCrossRefGoogle Scholar
  16. Brinton, M. A., and Nathanson, N., 1981, Genetic determinants of virus susceptibility: Epidemiologic implications of murine models, Epidemiol. Rev. 3: 115.PubMedGoogle Scholar
  17. Brinton, M. A., Arnheiter, H., and Haller, O., 1982, Interferon independence of genetically controlled resistance to flaviviruses, Infect. Immun. 36: 284.PubMedGoogle Scholar
  18. Brinton, M. A., Blank, K. J., and Nathanson, N., 1984, Host genes that influence susceptibility to viral diseases, in: Concepts in Viral Pathogenesis ( A. L. Notkins and M. B. A. Oldstone, eds.), pp. 71 - 78, Springer-Verlag, New York.CrossRefGoogle Scholar
  19. Brinton, M. A., Davis, J., and Schaefer, D., 1985, Characterization of West Nile virus persistent infections in genetically resistant and susceptible mouse cells. II. Generation of temperature-sensitive mutants, Virology 140: 152.PubMedCrossRefGoogle Scholar
  20. Brinton, M. A., Fernandez, A. V., and Amato, J., 1986, The 3’-nucleotides of flavivirus genomic RNA form a conserved secondary structure, Virology, submitted.Google Scholar
  21. Calberg-Bacq, C.-M., Rentier-Delrue, F., Osterrieth, P. M., and Duchesne, P. Y., 1975, Electron microscopy studies on Banzi virus particle and its development in the suckling mouse brain, J. Ultrastruct Res. 53: 193.PubMedCrossRefGoogle Scholar
  22. Caliguiri, L. A., and Tamm, I., 1970, The role of cytoplasmic membranes in poliovirus biosynthesis, Virology 42: 100.PubMedCrossRefGoogle Scholar
  23. Calisher, C. H., Dalrymple, J. N., Karabatsos, N., Shope, R. E., Bishop, D. H. L., Brandt, W., Casals, J., Porterfield, J. S., Tesh, R. B., and Westaway, E. G., 1986, Antigenic relationships among flaviviruses as determined by cross neutralization: Proposed antigenic classification, submitted.Google Scholar
  24. Cammack, N., and Gould, E. A., 1985, Conditions for haemolysis by flaviviruses and characterization of the haemolysin, J. Gen. Virol. 66: 2291.PubMedCrossRefGoogle Scholar
  25. Cardiff, R. D., Dalrymple, J. M., and Russell, P. K., 1973, RNA polymerase in group B arbovirus (dengue-2) infected cells, Arch. Gesamte Virusforsch. 40: 392.PubMedCrossRefGoogle Scholar
  26. Cardosa, M. J., Porterfield, J. S., and Gordon, S., 1983, Complement receptor mediates enhanced flavivirus replication in macrophages, J. Exp. Med. 158: 258.PubMedCrossRefGoogle Scholar
  27. Chamberlain, R. W., 1980, Epidemiology of arthropod-borne togaviruses: The role of arthropods as hosts and vectors and of vertebrate hosts in natural transmission cycles, in: The Togaviruses ( R. W. Schlesinger, ed.), pp. 175 - 227, Academic Press, New York.Google Scholar
  28. Chu, P. W. G., and Westaway, E. G., 1985, Replication strategy of Kunjin virus: Evidence for recycling role of replicative form RNA as template in semiconservative and asymmetric replication, Virology 140: 68.PubMedCrossRefGoogle Scholar
  29. Cleaves, G. R., and Dubin, D. T., 1979, Methylation status of intracellular dengue type 2 40S RNA, Virology 96: 159.PubMedCrossRefGoogle Scholar
  30. Cleaves, G. R., and Schlesinger, R. W., 1977, Characterization of polysomal RNA’s from dengue virus infected KB cells, Abstr. Am. Soc. Microbiol. S-50: 287.Google Scholar
  31. Cleaves, G. R., Ryan, T. E., and Schlesinger, R. W., 1981, Identification and characterization of type 2 dengue virus replicative intermediate and replicative form RNAs, Virology 111: 73.PubMedCrossRefGoogle Scholar
  32. Dalton, S., 1972, Infection of neuronal and glial tissue in vivo by Langat, a group B arbovirus, Ann. Inst. Pasteur (Paris) 123: 489.Google Scholar
  33. Darnell, M. B., and Koprowski, H., 1974, Genetically determined resistance to infection with group B arboviruses. II. Increased production of interfering particles in cell cultures from resistant mice, J. Infect. Dis. 129: 248.PubMedCrossRefGoogle Scholar
  34. Darnell, M. B., Koprowski, H., and Lagerspetz, K., 1974, Genetically determined resistance to infection with group B arboviruses. I. Distribution of the resistance gene among various mouse populations and characteristics of gene expression in vivo, J. Infect. Dis. 129: 240.PubMedCrossRefGoogle Scholar
  35. Dasgupta, A., Zabel, P., and Baltimore, D., 1980, Dependence of the activity of the poliovirus replicase on a host cell protein, Cell 19: 423.PubMedCrossRefGoogle Scholar
  36. Daughaday, C. C., Brandt, W. E., McCown, J. M., and Russell, P. K., 1981, Evidence for two mechanisms of dengue virus infection of adherent human monocytes: Trypsin-sensitive virus receptors and trypsin-resistant immune complex receptors, Infect. Immun. 32: 469.PubMedGoogle Scholar
  37. Demsey, A., Steere, R. L., Brandt, W. E., and Veltri, B. J., 1974, Morphology and development of dengue-2 virus employing the freeze—fracture and thin-section techniques, J. Ultruct. Res. 46: 103.CrossRefGoogle Scholar
  38. Deubel, V., Crouset, J., Benichou, D., Digoutte, J.-P., Bouloy, M., and Girard, M., 1983, Preliminary characterization of the ribonucleic acid of yellow fever virus, Ann. Virol. 134E: 581.Google Scholar
  39. Eastman, P. S., and Blair, C. D., 1985, Temperature-sensitive mutants of Japanese encephalitis virus, J. Virol. 55: 611.PubMedGoogle Scholar
  40. Eckels, K. H., Brandt, W. E., Harrison, V. R., McCown, J. M., and Russell, P. K., 1976, Isolation of a temperature-sensitive dengue-2 virus under conditions suitable for vaccine development, Infect. Immun. 14: 1221.PubMedGoogle Scholar
  41. Eckels, K. H., Harrison, V. R., Summers, P. L., and Russell, P. K., 1980, Dengue-2 vaccine: Preparation from a small plaque virus clone, Infect. Immun. 27: 175.PubMedGoogle Scholar
  42. Eckels, K. H., Summers, P. L., and Russell, P. K., 1983, Temperature-sensitive events during the replication of the attenuated S-1 clone of dengue type 2 virus, Infect. Immun. 39: 750.PubMedGoogle Scholar
  43. Edelman, R., Schneider, R. J., Vejjajiva, A., Pornpibul, R., and Voodhikul, P., 1976, Persistence of virus-specific IgM and clinical recovery after Japanese encephalitis, Am. J. Trop. Med. Hyg. 25: 733.PubMedGoogle Scholar
  44. Filshie, B. K., and Rehacek, J., 1968, Studies of the morphology of Murray Valley encephalitis and Japanese encephalitis viruses growing in cultured mosquito cells, Virology 34: 435.PubMedCrossRefGoogle Scholar
  45. Fokina, G. I., Malenko, G. V., Levina, L. S., Koreshkova, G. V., Rzhakhova, O. E., Mamonenko, L. L., Pogodina, V. V., and Frolova, M. P., 1982, Persistence of tick-borne encephalitis virus in monkeys. V. Virus localization after subcutaneous inoculations, Acta. Virol. 26: 369.PubMedGoogle Scholar
  46. Frolova, M. P., and Pododina, V. V., 1984, Persistence of tick-borne encephalitis virus in monkeys. VI. Pathomorphology of chronic infection in central nervous system, Acta. Virol. 28: 232.PubMedGoogle Scholar
  47. Gollins, S. W., and Porterfield, J. S., 1984, Flavivirus infection enhancement in macrophages: Radioactive and biological studies on the effect of antibody on viral fate, J. Gen. Virol. 65: 1261.PubMedCrossRefGoogle Scholar
  48. Gollins, S. W., and Porterfield, J. S., 1985, Flavivirus infection enhancement in macrophages: an electron microscopic study of viral cellular entry, J. Gen. Virol. 66: 1969.PubMedCrossRefGoogle Scholar
  49. Grimley, P. M., 1983, Arbovirus encephalitis: Which road traveled by makes all the difference?, Lab. Invest. 48: 369.PubMedGoogle Scholar
  50. Grun, J. B., and Brinton, M. A., 1986a, Characterization of West Nile viral RNA-dependent RNA polymerase and cellular terminal adenylyl and uridylyl transferase in cell-free extracts, J. Virol., submitted.Google Scholar
  51. Grun, J. B., and Brinton, M. A., 1986b, Enhancement of in vitro West Nile virus RNA-dependent RNA polymerase activity, J. Virol., submitted.Google Scholar
  52. Halle, S., and Zebovitz, E., 1977, A spontaneous temperature sensitive mutant of Japanese encephalitis virus: Preliminary characterization, Arch Virol. 54: 165.PubMedCrossRefGoogle Scholar
  53. Halstead, S. B., 1980, Immunological parameters of togavirus disease syndromes, in: The Togaviruses (R. W. Schlesinger, ed.), pp. 107-173; Academic Press, New York.Google Scholar
  54. Halstead, S. B., 1981, The pathogenesis of dengue: Molecular epidemiology in infectious disease: The 1981 Alexander D. Langmuir Lecture, Am. J. Epidemiol. 114: 632.PubMedGoogle Scholar
  55. Halstead, S. B., 1982, Immune enhancement of viral infection, in: Progress in Allergy ( P. Kallos, ed.), pp. 301 - 364, S. Karger, Basel.Google Scholar
  56. Halstead, S. B., and O’Rourke, E. J., 1977, Dengue viruses and mononuclear phagocytes. I. Infection enhancement by non-neutralizing antibody, J. Exp. Med. 146: 201.PubMedCrossRefGoogle Scholar
  57. Halstead, S. B., Marchette, N. J., Chow, J. S., and Lolekha, S., 1976, Dengue virus replication enhancement in peripheral blood leukocytes from immune human beings, Proc. Soc. Exp. Biol. Med. 151: 136.PubMedGoogle Scholar
  58. Halstead, S. B., Porterfield, J. S., and O’Rourke, E. J., 1980, Enhancement of dengue infection in monocytes by flavivirus antisera, Am. J. Trop. Med. Hyg. 29: 638.PubMedGoogle Scholar
  59. Halstead, S. B., Rojanasuphot, S., and Sangkawibha, N., 1983, Original antigenic sin in dengue, Am. J. Trop. Med. Hyg. 32: 154.PubMedGoogle Scholar
  60. Halstead, S. B., Venkateshan, C. N., Gentry, M. K., and Larsen, L. K., 1984, Heterogeneity of infection enhancement of dengue 2 strains by monoclonal antibodies, J. Immunol. 132: 1529.PubMedGoogle Scholar
  61. Hammon, W. McD., Rohitaydhin, S., and Rhim, J. S., 1963, Studies on Japanese B encephalitis virus vaccines from tissue culture. IV. Preparation and characterization of a pool of attenuated Oct-541 line for human vaccine trial, J. Immunol. 91: 295.PubMedGoogle Scholar
  62. Harrison, A. K., Murphy, F. A., and Gardner, J. J., 1982, Visceral target organs in systemic St. Louis encephalitis virus infection of hamsters, Exp. Mol. Pathol. 37: 292.PubMedCrossRefGoogle Scholar
  63. Heinz, F. X., and Kunz, C., 1982, Molecular epidemiology of tick-borne encephalitis virus: Peptide mapping of large non-structural proteins of European isolates and comparison with other flaviviruses, J. Gen. Virol. 62: 271.PubMedCrossRefGoogle Scholar
  64. Heinz, F. X., Berger, R., Tuma, W., and Kunz, C., 1983, A topological and functional model of epitopes on the structural glycoprotein of tick-borne encephalitis virus defined by monoclonal antibodies, Virology 126: 525.PubMedCrossRefGoogle Scholar
  65. Henchal, E. A., Gentry, M. K., McCown, J. M., and Brandt, W. E., 1982, Dengue virus-specific and flavivirus group determinants identified with monoclonal antibodies by indirect immunofluorescence, Am. J. Trop. Med. Hyg. 31: 830.PubMedGoogle Scholar
  66. Holland, J. J., Villarreal, L. P., and Breindl, M., 1976, Factors involved in the generation and replication of rhabdovirus defective T particles, J. Virol. 17: 805.PubMedGoogle Scholar
  67. Hollingshead, P. G., Jr., Brawner, T. A., and Fleming, T. P., 1983, St. Louis encephalitis virus temperature-sensitive mutants. I. Induction, isolation and preliminary characterization, Arch. Virol. 75: 171.PubMedCrossRefGoogle Scholar
  68. Hotta, S., and Evans, C. A., 1956, Cultivation of mouse-adapted dengue virus (type 1) in rhesus monkey tissue culture, J. Infect. Dis. 98: 88.PubMedCrossRefGoogle Scholar
  69. Hotta, H., Hotta, S., Takada, H., Kotani, S., Tanaka, S., and Ohki, M., 1983, Enhancement of dengue virus type 2 replication in mouse macrophage cultures by bacterial cell walls, peptidoglycans, and a polymer of peptidoglycan subunits, Infect. Immun. 41: 462.PubMedGoogle Scholar
  70. Hotta, H., Wiharta, A. S., and Hotta, S., 1984, Antibody-mediated enhancement of dengue virus infection in mouse macrophage cell lines, Mkl and Mml, Proc. Soc. Exp. Biol. Med. 175: 320.PubMedGoogle Scholar
  71. Igarashi, A., 1978, Isolation of Singh’s Aedes albopictus cell clone sensitive to dengue and chikungunya viruses, J. Gen Virol. 40: 531.PubMedCrossRefGoogle Scholar
  72. Igarashi, A., 1979, Characteristics of Aedes albopictus cells persistently infected with dengue viruses, Nature (London) 280: 690.CrossRefGoogle Scholar
  73. Igarashi, A., Harrap, K. A., Casals, J., and Stoller, V., 1976, Morphological, biochemical and serological studies on a viral agent (CFA) which replicates in and causes fusion of Aedes albopictus (Singh) cells, Virology 74: 174.PubMedCrossRefGoogle Scholar
  74. Ilienko, V. I., Platonov, V. G., Komandenko, V. G., Prozorova, I. N., and Panov, A. T., 1974, Pathogenic study on chronic forms of tick-borne encephalitis, Acta Virol. 18: 341.Google Scholar
  75. Jarman, R. V., Morgan, P. N., and Duffy, C. E., 1968, Persistence of West Nile virus in L929 mouse fibroblasts, Proc. Soc. Exp. Biol. Med. 129: 633.PubMedGoogle Scholar
  76. Kang, C. Y., and Allen, R., 1978, Host function-dependent induction of defective interfering particles of vesicular stomatitis virus, J. Virol. 25: 202.PubMedGoogle Scholar
  77. Katz, E., and Goldblum, N., 1968, Establishment, steady state, and cure of a chronic infection of LLC cells with West Nile virus, Arch. Gesamte Virusforsch. 25: 69.PubMedCrossRefGoogle Scholar
  78. Kliks, S. C., and Halstead, S. B., 1980, An explanation for enhanced virus production in chick embryo cells, Nature (London) 285: 504.CrossRefGoogle Scholar
  79. Kos, K. A., Osborne, B. A., and Goldsby, R. A., 1975, Inhibition of Group B arbovirus antigen production and replication in cells enucleated with cytochalasin B, J. Virol. 15: 913.PubMedGoogle Scholar
  80. Kos, K. A., Goldsby, R. A., and Top, F. H., Jr. 1976, Differential inhibition of flavivirus and alphavirus replication by cordycepin, Abstr. Annu. Meet. Am. Soc. Microbiol., p. 244.Google Scholar
  81. Kuno, G., 1982, Persistent infection of a nonvector mosquito cell line (TRA-171) with dengue viruses, Intervirology 18: 45.PubMedCrossRefGoogle Scholar
  82. Lazzarini, R. A., Keene, J. D., and Schubert, M., 1981, The origins of defective interfering particles of the negative-strand RNA viruses, Cell 26: 145.PubMedCrossRefGoogle Scholar
  83. Leary, K. R., and Blair, C. D., 1980, Sequential events in the morphogenesis of Japanese encephalitis virus, J. Ultrastruct. Res. 72: 123.PubMedCrossRefGoogle Scholar
  84. Leary, K. R., and Blair, C. D., 1983, Japanese encephalitis virus replication: Studies on host cell nuclear involvement, Exp. Mol. Pathol. 38: 264.PubMedCrossRefGoogle Scholar
  85. Lee, C., and Schloemer, R. H., 1981, Identification of the antiviral factor in culture medium of mosquito cells persistently infected with Banzi virus, Virology 110: 445.PubMedCrossRefGoogle Scholar
  86. Liprandi, F., and Walder, R., 1983, Replication of virulent and attenuated strains of yellow fever virus in human monocytes and macrophage-like cells (U-937), Arch. Virol. 76: 51.PubMedCrossRefGoogle Scholar
  87. Lubiniecki, A. S., and Henry, C. J., 1974, Autoradiographic localization of RNA synthesis directed by arboviruses in the cytoplasm of infected BHK-21 cells, Proc. Soc. Exp. Biol. Med. 145: 1165.PubMedGoogle Scholar
  88. Luukkonen, A., von Bonsdorff, C.-H., and Renkonen, O., 1977, Characterization of Semliki Forest virus grown in mosquito cells: Comparison with the virus from hamster cells, Virology 78: 331.PubMedCrossRefGoogle Scholar
  89. Maguire, T., and Miles, J. A. R., 1965, The arbovirus carrier state in tissue cultures, Arch. Virusforsch. 15: 457.PubMedCrossRefGoogle Scholar
  90. Malenko, G. V., Fokina, G. I., Levina, L. S., Mamonenko, L. E., Rzhakhova, O. E., Pogodina, V. V., and Frolova, M. P., 1982, Persistence of tick-borne encephalitis virus in monkeys. IV. Virus localization after intracerebral inoculation, Acta Virol. 26: 362.PubMedGoogle Scholar
  91. Mathews, J. H., and Vomdam, A. V., 1982, Interferon-mediated persistent infection of Saint Louis encephalitis virus in a reptilian cell line, J. Gen. Virol. 61: 177.PubMedCrossRefGoogle Scholar
  92. Mathur, A., Arora, K. L., and Chaturvedi, U. C., 1982, Transplacental Japanese encephalitis virus (JEV) infection in mice during consecutive pregnancies, /. Gen. Virol. 59: 213.CrossRefGoogle Scholar
  93. Matsumura, T., Stoller, V., and Schlesinger, R. W., 1971, Studies on the nature of dengue viruses. V. Structure and development of dengue virus in Vero cells, Virology 46: 344.PubMedCrossRefGoogle Scholar
  94. Matsumura, T., Stollar, V., and Schlesinger, R. W., 1972, Effect of ionic strength on the release of dengue virus from Vero cells, J. Gen. Virol. 17: 343.PubMedCrossRefGoogle Scholar
  95. Mayer, V., 1963, Two variants of tick-borne encephalitis showing different plaque morphology, Virology 20: 372.PubMedCrossRefGoogle Scholar
  96. Monath, T. P. C., 1971, Neutralizing antibody responses in the major immunoglobulin classes to yellow fever 17D vaccination of humans, Am. J. Epidemiol. 93: 122.PubMedGoogle Scholar
  97. Monath, T. (ed.), 1980, St. Louis Encephalitis, American Public Health Association, Washington, D. C.Google Scholar
  98. Monath, T. P., Cropp, C. B., and Harrison, B. S., 1983, Mode of entry of a neurotropic arbovirus into the central nervous system, Lab. Invest. 48: 399.PubMedGoogle Scholar
  99. Monckton, R. P., and Westaway, E. G., 1982, Restricted translation of the genome of the flavivirus Kunjin in vitro, J. Gen. Virol. 63: 227.PubMedCrossRefGoogle Scholar
  100. Murphy, F. A., 1980, Togavirus morphology and morphogenesis, in: The Togaviruses ( R. W. Schlesinger, ed.), pp. 241 - 316, Academic Press, New York.Google Scholar
  101. Murphy, F. A., Harrison, A. K., Gary, G. W., Whitfield, S. G., and Forrester, F. T., 1968, St. Louis encephalitis virus infection of mice: Electron microscopic studies of central nervous system, Lab. Invest. 19: 652.PubMedGoogle Scholar
  102. Mussgay, M., Enzmann, P.-J., Horzinek, M. C., and Weiland, E., 1975, Growth cycle of arboviruses in vertebrate and arthropod cells, Prog. Med. Vitol. 19: 257.Google Scholar
  103. Naeve, C. W., and Trent, D. W., 1977, Identification of Saint Louis encephalitis virus mRNA, Abstracts of the Annual Meeting of the American Society of Microbiology, p. 287, Washington, D. C.Google Scholar
  104. Naeve, C. W., and Trent, D. W., 1978, Identification of Saint Louis encephalitis virus mRNA, J. Vitol. 25: 535.Google Scholar
  105. Ng, M. L., and Westaway, E. G., 1980, Establishment of persistent infections by flavivirus in Aedes albopictus cells, in: Invertebrate Systems in Vitro ( E. Kurstak, K. Maramorosch, and A. Dubendorfer, eds.), pp. 389 - 402, Elsevier, Amsterdam.Google Scholar
  106. Ng, M. L., and Westaway, E. G., 1983, Phenotypic changes in the flavivirus Kunjin after a single cycle of growth in an Aedes albopictus cell line, J. Gen. Virol. 64: 1715.PubMedCrossRefGoogle Scholar
  107. Ng, M. L., Pedersen, J. S., Toh, B. H., and Westaway, E. G., 1983, Immunofluorescent sites in Vero cells infected with the flavivirus Kunjin, Arch. Vitol. 78: 177.Google Scholar
  108. Ogawa, M., Okubo, H., Tsuji, Y., Yasui, N., and Someda, K., 1973, Chronic progressive encephalitis occurring 13 years after Russian spring—summer-encephalitis, J. Neurol. Sci. 19: 363.PubMedCrossRefGoogle Scholar
  109. Pang, T., 1983, Immunoepidemiology helps to unravel the mysteries of dengue haemorrhagic fever, Immunol. Today 4: 334.Google Scholar
  110. Paul, S. D., 1966, Some biological properties of two variants of Kyasanur Forest disease virus, Indian J. Med. Res. 54: 419.Google Scholar
  111. Peiris, J. S. M., and Porterfield, J. S., 1979, Antibody-mediated enhancement of flavivirus replication in macrophage cell lines, Nature (London) 282: 509.CrossRefGoogle Scholar
  112. Peiris, J. S. M., and Porterfield, J. S., 1981, Antibody-dependent enhancement of plaque formation on cell lines of macrophage origin: A sensitive assay for antiviral antibody, J. Gen. Vitol. 57: 119.CrossRefGoogle Scholar
  113. Peiris, J. S. M., and Porterfield, J. S., 1982, Antibody-dependent plaque enhancement: Its antigenic specificity in relation to Togaviridae, J. Gen. Virrl. 58: 291.CrossRefGoogle Scholar
  114. Peiris, J. S. M., Gordon, S., Unkeless, J. C., and Porterfield, J. S., 1981a, Monoclonal antiFc receptor IgG blocks antibody enchancement of viral replication in macrophages, Nature (London) 289: 189.CrossRefGoogle Scholar
  115. Peiris, J. S. M., Gordon, S., Porterfield, J. S., and Unkeless, J. C., 198 lb, Antibody mediated enhancement of virus replication in macrophage-like cell lines: Its dependence on theGoogle Scholar
  116. Fc receptor in: Heterogeneity of the Mononuclear Phagocytes: Proceedings of an International Workshop (O. Forster and M. Landy, eds.), pp. 469-476, Academic Press, New York.Google Scholar
  117. Peiris, J. S. M., Porterfield, J. S., and Roehrig, J. T., 1982, Monoclonal antibodies against the flavivirus West Nile, J. Gen. Vitol. 58: 283.CrossRefGoogle Scholar
  118. Pfefferkorn, E. R., and Shapiro, D., 1974, Reproduction of small and intermediate RNA viruses, in: Comprehensive Virology 2 ( H. Fraenkel-Conrat and R. R. Wagner, eds.), pp. 171 - 230, Plenum Press, New York.Google Scholar
  119. Phillpotts, R. J., Stephenson, J. R., and Porterfield, J. S., 1985, Antibody dependent enhancement of tick-borne encephalitis virus infectivity, J. Gen. Vitol. 66: 1831.CrossRefGoogle Scholar
  120. Porterfield, J. S., Casals, J., Chumakov, M. P., Gaidamovich, S. Ya, Hannoun, C., Holmes, I. I-L, Horzinek, M. C., Mussgay, M., Oker-Blom, N., Russell, P. K., and Trent, D. W., 1978, Togaviruses, Intervirology 9: 129.PubMedCrossRefGoogle Scholar
  121. Price, W. H., 1966, Chronic disease and virus persistence in mice inoculated with Kyasanur Forest disease virus, Virology 29: 679.PubMedCrossRefGoogle Scholar
  122. Price, W. H., Lee, R. W., Gunkel, W. F., and O’Leary, W., 1963, The virulence of West Nile virus and TP21 virus and their application to a group B arbovirus vaccine, Am. J. Trop. Med. Hyg. 10: 403.Google Scholar
  123. Qureshi, A. A., and Trent, D. W., 1972, Saint Louis encephalitis viral ribonucleic acid replication complex, J. Vitol. 9: 565.Google Scholar
  124. Qureshi, A. A., and Trent, D. W., 1973a, Group B arbovirus structural and nonstructural antigens. I. Serological identification of Saint Louis encephalitis virus soluble antigen, Infect. Immun. 7: 242.PubMedGoogle Scholar
  125. Qureshi, A. A., and Trent, D. W., 1973b, Group B arbovirus structural and nonstructural antigens. II. Purification of Saint Louis encephalitis virus intracellular antigens, Infect. Immun. 8: 985.PubMedGoogle Scholar
  126. Qureshi, A. A., and Trent, D. W., 1973c, Group B arbovirus structural and nonstructural antigens. III. Serological specificity of solubilized intracellular viral proteins, Infect. Immun 8. 933.Google Scholar
  127. Rice, C. H., Lenches, E. M., Dalgamo, L., Eddy, S. R., Shin, S. J., Sheets, R. L., Trent, D. W., and Strauss, J. H., 1985, Nucleotide sequence of yellow fever virus: Implications for flavivirus gene expression and evolution, Science 229: 726.PubMedCrossRefGoogle Scholar
  128. Roehrig, J. T., Mathews, J. H., and Trent, D. W., 1983, Identification of epitopes on the E glycoprotein of Saint Louis encephalitis virus using monoclonal antibodies, Virology 128: 118.PubMedCrossRefGoogle Scholar
  129. Russell, P. K., Brandt, W. E., and Dalrymple, J. M., 1980, Chemical and antigenic structure of flaviviruses, in: The Togaviruses ( R. W. Schlesinger, ed.), pp. 503 - 529, Academic Press, New York.Google Scholar
  130. Sabin, A. B., 1952a, Nature of inherited resistance to viruses affecting the nervous system, Proc. Natl. Acad. Sci. U.S.A. 38: 540.PubMedCrossRefGoogle Scholar
  131. Sabin, A. B., 1952b, Genetic, hormonal and age factors in natural resistance to certain viruses, Ann. N. Y. Acad. Sci. 54: 936.PubMedCrossRefGoogle Scholar
  132. Sangkawibha, N., Rojanasuphot, S, Ahandrik, S., Viriyapongse, S., Jatanasen, S., Salitul, V., Phanthumachinda, B., and Halstead, S. B., 1984, Risk factors in dengue shock syndrome: A prospective epidemiologic study in Rayong, Thailand, Am. J. Epidemiol. 120: 653.PubMedGoogle Scholar
  133. Sawyer, W. A., and Lloyd, W., 1931, The use of mice in tests of immunity against yellow fever, J. Exp. Med. 54: 533.PubMedCrossRefGoogle Scholar
  134. Schlesinger, J. J., and Brandriss, M. W., 1983, 17D yellow fever virus infection of P388D1 cells mediated by monoclonal antibodies: Properties of the macrophage Fc receptor, J. Gen. Virol. 64: 1255.Google Scholar
  135. Schlesinger, J. J., Brandriss, M. W., and Monath, T. P., 1983, Monoclonal antibodies distinguish between wild and vaccine strains of yellow fever virus by neutralization, hem-agglutination inhibition, and immune precipitation of the virus envelope protein, Virology 125: 8.PubMedCrossRefGoogle Scholar
  136. Schlesinger, J. J., Brandriss, M. W., and Walsh, E. E., 1985, Protection against 17D yellow fever encephalitis in mice by passive transfer of monoclonal antibodies to the nonstructural glycoprotein gp48 and by active immunization with gp48, J. Immunol. 135: 2805.PubMedGoogle Scholar
  137. Schlesinger, R. W., 1977, Dengue viruses in: Virology Monographs, No. 16, pp. 1 - 132, Springer-Verlag, New York.Google Scholar
  138. Schmaljohn, C., and Blair, C. D., 1977, Persistent infection of cultured mammalian cells by Japanese encephalitis virus, J. Virol. 24: 580.PubMedGoogle Scholar
  139. Schmaljohn, C. S., and Blair, C. D., 1979, Clonal analysis of mammalian cell cultures persistently infected with Japanese encephalitis virus, J. Virol. 31: 816.PubMedGoogle Scholar
  140. Schubert, M., Keene, J. D., and Lazzarini, R. A., 1979, A specific internal RNA polymerase recognition site of VSV RNA is involved in the generation of DI particles, Cell 18: 749.PubMedCrossRefGoogle Scholar
  141. Schulze, I. T., and Schlesinger, R. W., 1963, Plaque assay of dengue and other group Barthropod-borne viruses under methyl cellulose overlay media, Virology 19: 40.PubMedCrossRefGoogle Scholar
  142. Shapiro, D., Brandt, W. E., Cardiff, R. D., and Russell, P. K., 1971, The proteins of JapaneseGoogle Scholar
  143. encephalitis virus, Virology 44:108.Google Scholar
  144. Shapiro, D., Brandt, W. E., and Russell, P. K., 1972a, Change involving a viral membrane glycoprotein during morphogenesis of group B arboviruses, Virology 50: 906.PubMedCrossRefGoogle Scholar
  145. Shapiro, D., Kos, K., Brandt, W. E., and Russell, P. K., 1972b, Membrane-bound proteins of Japanese encephalitis virus-infected chick embryo cells, Virology 48: 360.PubMedCrossRefGoogle Scholar
  146. Shapiro, D., Trent, D., Brandt, W. E., and Russell, P. K., 1972c, Comparison of the virion polypeptides of Group B arboviruses, Infect. Immun. 6: 206.PubMedGoogle Scholar
  147. Shapiro, D., Kos, K. A., and Russell, P. K., 1973, Japanese encephalitis virus glycoproteins, Virology 56: 88.PubMedCrossRefGoogle Scholar
  148. Shimazu, Y., Aoki, H., and Hotta, S., 1966, Research on dengue in tissue culture. II. Further observations on virus-tissue culture affinity, Kobe J. Med. Sci. 12: 189.PubMedGoogle Scholar
  149. Shope, R. E., 1980, Medical significance of togaviruses, in: The Togaviruses ( R. W. Schlesinger, ed.), pp. 47 - 82, Academic Press, New York.Google Scholar
  150. Sinarachatanant, P., and Olson, L. C., 1973, Replication of dengue virus type 2 in Aedes albopictus cell culture, J. Virol. 12: 275.PubMedGoogle Scholar
  151. Slavin, H. B., 1943, Persistence of the virus of St. Louis encephalitis in the central nervous system of mice for over five months, J. Bacteriol. 46: 113.PubMedGoogle Scholar
  152. Smith, A. L., 1981, Genetic resistance to lethal flavivirus encephalitis: Effects of host age and immune status and route of inoculation on production of interfering Banzi virus in vivo, Am. J. Trop. Med. Hyg. 30: 1319.Google Scholar
  153. Smith, G. W., and Wright, P. J., 1985, Synthesis of proteins and glycoproteins in dengue type 2 virus-infected Vero and Aedes albopictus cells, J. Gen. Virol. 66: 559.PubMedCrossRefGoogle Scholar
  154. Sriurairatna, S., Bhamarapravati, N., and Phalavadhtana, O., 1973, Dengue virus infection of mice: Morphology and morphogenesis of dengue type 2 virus in suckling mouse neurons, Infect. Immun 8. 1017.PubMedGoogle Scholar
  155. Stephenson, J. R., Lee, J. M., and Wilton-Smith, P. D., 1984, Antigenic variation among members of the tick-borne encephalitis complex, j. Gen. Virol. 65: 81.PubMedCrossRefGoogle Scholar
  156. Stohlman, S. A., Wisseman, C. L., Jr., Eylar, O. R., and Silverman, D. J., 1975, Dengue virus induced modifications of host cell membranes, J. Virol. 16: 1017.PubMedGoogle Scholar
  157. Stollar, V., 1980, Togaviruses in cultured arthropod cells, in: The Togaviruses ( R. W. Schlesinger, ed.), pp. 583 - 621, Academic Press, New York.Google Scholar
  158. Stollar, V., Schlesinger, R. W., and Stevens, T. M., 1967, Studies on the nature of dengue viruses. III. RNA synthesis in cells infected with type 2 dengue virus, Virology 33: 650.PubMedCrossRefGoogle Scholar
  159. Stollar, V., Stollar, B. D., Koo, R., Harrap, K. A., and Schlesinger, R. W., 1976, Sialic acid contents of Sindbis virus from vertebrate and mosquito cells, Virology 69: 104.PubMedCrossRefGoogle Scholar
  160. Strauss, E. G., and Strauss, J. H., 1983, Replication strategies of the single stranded RNA viruses of eukaryotes, Curr. Top. Microbiol. Immunol. 105: 1.PubMedCrossRefGoogle Scholar
  161. Strauss, J. H., and Strauss, E. G., 1977, Togaviruses, in: The Molecular Biology of Animal Viruses ( D. P. Nayak, ed.), pp. 111 - 166, Marcel Dekker, New York.Google Scholar
  162. Svitkin, Y. V., Ugarova, T. Y., Chernovskaya, T. V., Lyapustin, V. N., Lashkevich, V. A., and Agol, V. I., 1981, Translation of tick-borne encephalitis virus (flavivirus) genome in vitro: Synthesis of two structural polypeptides, Virology 110: 26.PubMedCrossRefGoogle Scholar
  163. Takeda, H., Oya, A., Hashimoto, K., Yasuda, T., and Yamada, M.-A., 1978, Association of virus specific replicative ribonucleic acid with nuclear membrane in chick embryo cells infected with Japanese encephalitis virus, J. Gen. Virol. 38: 281.PubMedCrossRefGoogle Scholar
  164. Takegami, T., Miyamoto, H., Nakamura, H., and Yasui, K., 1982, Biological activities of the structural proteins of Japanese encephalitis virus, Acta Virol. 26: 312.PubMedGoogle Scholar
  165. Takehara, M., 1971, Comparative studies on nucleic acid synthesis and virus-induced RNA polymerase activity in mammalian cells infected with certain arboviruses, Arch. Gesamte. Virusforsch. 34: 266.PubMedCrossRefGoogle Scholar
  166. Takehara, M., 1972, Inhibition of nuclear protein synthesis in BHK-21 cells infected with arboviruses, Arch. Gesamte Virusforsch. 39: 163.PubMedCrossRefGoogle Scholar
  167. Tarr, G. C., and Lubiniecki, A. S., 1976, Chemically-induced temperature sensitive mutants of dengue virus type 2. I. Isolation and partial characterization, Arch. Virol. 50: 223.PubMedCrossRefGoogle Scholar
  168. Theiler, M., 1951, The virus, in: Yellow Fever ( G. K. Strode, ed.), pp. 39 - 136, McGraw-Hill, New York.Google Scholar
  169. Trent, D. W., 1977, Antigenic characterization of flavivirus structural proteins separated by isoelectric focusing, J. Virol. 22: 608.PubMedGoogle Scholar
  170. Trent, D. W., and Naeve, C. W., 1980, Biochemistry and replication, in: St. Louis Encephalitis ( T. Monath, ed.), pp. 159 - 199, American Public Health Association, Washington, D. C.Google Scholar
  171. Trent, D. W., and Qureshi, A. A., 1971, Structural and nonstructural proteins of Saint Louis encephalitis virus, J. Virol. 7: 379.PubMedGoogle Scholar
  172. Trent, D. W., Swenson, C. C., and Qureshi, A. A., 1969, Synthesis of Saint Louis encephalitis virus ribonucleic acid in BHK-21/13 cells, J. Virol. 3: 385.PubMedGoogle Scholar
  173. Virus Research Center, Poona, 1963, Survival of KFD virus in mice surviving paralysis, Annual Report, p. 109.Google Scholar
  174. Von Magnus, P., 1954, Incomplete forms of influenza virus, Adv. Virus Res. 2: 59.CrossRefGoogle Scholar
  175. Webster, L. T., 1933, Inherited and acquired factors in resistance to infection. I. Development of resistant and susceptible lines of mice through selective breeding, J. Exp. Med. 57: 793.PubMedCrossRefGoogle Scholar
  176. Webster, L. T., and Clow, A. D., 1936, The limited neurotropic character of the encephalitis virus (St. Louis type) in susceptible mice, J. Exp. Med. 63: 433.PubMedCrossRefGoogle Scholar
  177. Webster, L. T., and Johnson, M. S., 1941, Comparative virulence of St. Louis encephalitis virus cultured with brain tissue from innately susceptible and innately resistant mice, J. Exp. Med. 74: 489.PubMedCrossRefGoogle Scholar
  178. Wengler, G., and Wengler, G., 1981, Terminal sequences of the genome and replication from RNA of the flavivirus West Nile virus: Absence of poly(A) and possible role in RNA replication, Virology 113: 544.PubMedCrossRefGoogle Scholar
  179. Wengler, G., Wengler, G., and Gross, H. J., 1978, Studies on virus-specified nucleic acids synthesized in vertebrate and mosquito cells infected with flaviviruses, Virology 89: 423.PubMedCrossRefGoogle Scholar
  180. Wengler, G., Beato, M., and Wengler, G., 1979, In vitro translation of 42S virus-specific RNA from cells infected with the flavivirus, West Nile virus, Virology 96: 516.Google Scholar
  181. Westaway, E. G., 1973, Proteins specified by group B togaviruses in mammalian cells during productive infections, Virology 51: 454.PubMedCrossRefGoogle Scholar
  182. Westaway, E. G., 1977, Strategy of the flavivirus genome: Evidence for multiple internal initiation of translation of proteins specified by Kunjin virus in mammalian cells, Virology 80: 320.PubMedCrossRefGoogle Scholar
  183. Westaway, E. G., 1980, Replication of flaviviruses, in: The Togaviruses ( R. W. Schlesinger, ed.), pp. 531 - 581, Academic Press, New York.Google Scholar
  184. Westaway, E. G., and Ng, N. L., 1980, Replication of flaviviruses: Separation of translation sites of Kunjin virus proteins and of cells proteins, Virology 106: 107.PubMedCrossRefGoogle Scholar
  185. Westaway, E. G., and Reedman, B. M., 1969, Proteins of the group B arbovirus Kunjin, J. Virol 4: 688.PubMedGoogle Scholar
  186. Westaway, E. G., and Shew, M., 1977, Proteins and glycoproteins specified by the flavivirus Kunjin, Virology 80: 309.PubMedCrossRefGoogle Scholar
  187. Westaway, E. G., Schlesinger, R. W., Dalrymple, J. M., and Trent, D. W., 1980, Nomenclature of flavivirus specified proteins, Intervirology 14: 114.PubMedCrossRefGoogle Scholar
  188. Westaway, E. G., Speight, G., and Endo, L., 1984, Gene order of translation of the flavivirus Kunjin: Further evidence of internal initiation in vivo, Virus Res. 1: 333.CrossRefGoogle Scholar
  189. Westaway, E. G., Brinton, M. A., Gaidamovich, S. Ya., Horzinek, M. C., Igarashi, A., Kaariainen, L., Lvov, D. K., Porterfield, J. S., Russell, P. K., and Trent, D. W., 1986, Flaviviridae, Intervirology 24: 183.CrossRefGoogle Scholar
  190. White, J., Kartenbeck, J., and Helenius, A., 1980, Fusion of Semliki Forest virus with the plasma membrane can be induced by low pH, J. Cell Biol. 87: 264.PubMedCrossRefGoogle Scholar
  191. White, J., Matlin, K., and Helenius, A., 1981, Cell fusion by Semliki Forest, influenza, and vesicular stomatitis viruses, J. Cell Biol. 89: 674.PubMedCrossRefGoogle Scholar
  192. Whitfield, S. G., Murphy, F. A., and Sudia, W. D., 1973, St. Louis encephalitis virus: An ultrastructural study of infection in a mosquito vector, Virology 56: 70.PubMedCrossRefGoogle Scholar
  193. Wright, P. J., 1982, Envelope protein of the flavivirus Kunjin is apparently not glycosylated, J. Gen. Virol. 59: 29.PubMedCrossRefGoogle Scholar
  194. Wright, P. J., and Warr, H. M., 1985, Peptide mapping of envelope-related glycoproteins specified by the flaviviruses Kunjin and West Nile, J. Gen. Virol. 66: 597.PubMedCrossRefGoogle Scholar
  195. Wright, P. J., and Westaway, E. G., 1977, Comparisons of the peptide maps of Kunjin virus proteins smaller than the envelope protein, J. Virol. 24: 662.PubMedGoogle Scholar
  196. Wright, P. J., Warr, H. M., and Westaway, E. G., 1983, Comparisons by peptide mapping of proteins specified by Kunjin, West Nile and Murray Valley encephalitis viruses, Aust. J. Exp. Biol. Med. Sci. 61: 641.PubMedCrossRefGoogle Scholar
  197. Yazuzumi, G, Tsubo, I., Sugihara, R., and Nakai, Y., 1964, Analysis of the development of Japanese B encephalitis (JBE) virus. I. Electron microscope studies of microglia infected with JBE virus, J. Ultrastruct. Res. 11: 213.CrossRefGoogle Scholar
  198. Zebovitz, E., Leong, J. K. L., and Doughty, S. C., 1972, Japanese encephalitis virus replication: A procedure for the selective isolation and characterization of viral RNA species, Arch. Gesamte Virusforsch. 38: 319.PubMedCrossRefGoogle Scholar
  199. Zebovitz, E., Leong, J. K. L., and Doughty, S. C., 1974, Involvement of host cell nuclear envelope membranes in the replication of Japanese encephalitis virus, Infect. Immun 10: 214.Google Scholar
  200. Zinder, N. (ed.), 1975, RNA Phages, Cold Spring Harbor Press, Cold Spring Harbor, New York.Google Scholar
  201. Zlotnik, I., Grant, D. P., and Carter, J. B., 1976, Experimental infection of monkeys with viruses of the tick-borne encephalitis complex: Degenerative cerebellar lesions following inapparent forms of the disease or recovery from clinical encephalitis, Br. J. Exp. Pathol. 57: 200.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Margo A. Brinton
    • 1
  1. 1.The Wistar Institute of Anatomy and BiologyPhiladelphiaUSA

Personalised recommendations