Skip to main content

Structure of the Flavivirus Genome

  • Chapter
The Togaviridae and Flaviviridae

Part of the book series: The Viruses ((VIRS))

Abstract

The flaviviruses were formerly classified as a genus in the family Togaviridae. They have now been elevated to family status, family Flaviviridae, in part because of differences in replication and assembly (Westaway, 1980) (Chapter 11) and in part because their genome structure is quite different from that of the alphaviruses (Rice et al., 1985) (compare with Chapter 3). With the determination of the complete nucleotide sequence of the yellow fever virus genome and a large portion of the Murray Valley encephalitis virus genome, it has become clear that these viruses represent a distinct group among the plus-stranded RNA viruses. This chapter will focus on the implications of these and other recent sequence data on flavivirus gene expression, replication, and evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahlquist, P., Dasgupta, R., and Kaesberg, P., 1984, Nucleotide sequence of the brome mosaic virus genome and implications for viral replication, J. Mol. Biol. 172: 369–383.

    Article  PubMed  CAS  Google Scholar 

  • Ahlquist, P., Strauss, E. G., Rice, C. M., Strauss, J. H., Haseloff, J., and Zimmern, D., 1985, Sindbis virus proteins nsPl and nsP2 contain homology to nonstructural proteins from several RNA plant viruses, J. Virol. 53:536–542.

    Google Scholar 

  • Bell, J. R., Kinney, R. M., Trent, D. W., Strauss, E. G., and Strauss, J. H., 1984, An evolutionary tree relating eight alphaviruses, based on amino-terminal sequences of their glycoproteins, Proc. Natl. Acad. Sci. U.S.A. 81: 4702–4706.

    Article  PubMed  CAS  Google Scholar 

  • Bell, J. R., Kinney, R. M., Trent, D. W., Lenches, E. M., Dalgamo, L., and Strauss, J. H., 1985, N-terminal amino acid sequences of structural proteins of three flaviviruses, Virology 143: 224–229.

    Article  PubMed  CAS  Google Scholar 

  • Bird, A. P., 1980, DNA methylation and the frequency of CpG in animal DNA, Nucleic Acids Res. 8: 1499–1504.

    Article  PubMed  CAS  Google Scholar 

  • Blok, J., Henchal, E. A., and Gorman, B. M., 1984, Comparison of dengue viruses and some other flaviviruses by cDNA—RNA hybridization analysis and detection of a close relationship between dengue virus serotype 2 and Edge Hill virus, J. Gen. Virol. 65: 2173–2181.

    Article  PubMed  CAS  Google Scholar 

  • Boege, U., Wengler, G., Wengler, G., and Wittmann-Liebold, B., 1981, Primary structure of the core proteins of the alphaviruses Semliki Forest virus and Sindbis virus, Virology 113: 293–303.

    Article  PubMed  CAS  Google Scholar 

  • Boege, U., Heinz, F X, Wengler, G., and Kunz, C., 1983, Amino acid compositions and amino-terminal sequences of the structural proteins of a flavivirus, European tick-borne encephalitis virus, Virology 126: 651–657.

    Article  PubMed  CAS  Google Scholar 

  • Boulton, R. W., and Westaway, E. G., 1977, Togavirus RNA: Reversible effect of urea on genomes and absence of subgenomic viral RNA in Kunjin virus-infected cells, Arch. Virol. 55: 201–208.

    Article  PubMed  CAS  Google Scholar 

  • Brinton, M. A., Fernandez, A. V., and Amato, J., 1986, Sequence analysis of the 3’ terminus of West Nile virus, strain E101, genome RNA

    Google Scholar 

  • Cardiff, R. D., and Lund, J. K., 1976, Distribution of dengue-2 antigens by electron immunocytochemistry, Infect. Immun. 13: 1699–1709.

    PubMed  CAS  Google Scholar 

  • Carroll, A. R., Rowlands, D. J., and Clarke, B. E., 1984, The complete nucleotide sequence of the RNA coding for the primary translation product of foot-and-mouth disease virus, Nucleic Acids Res. 12: 2461–2472.

    Article  PubMed  CAS  Google Scholar 

  • Castle, E., Nowak, T., Leidner, U., Wengler, G., and Wengler, G., 1985, Sequence analysis of the viral core protein and the membrane-associated proteins V1 and NV2 of the flavivirus West Nile virus and of the genome sequence for these proteins, Virology 145: 227–236.

    Article  PubMed  CAS  Google Scholar 

  • Chamberlain, R. W., 1980, Epidemiology of arthropod-borne Togaviruses: The role of arthropods as hosts and vectors and of vertebrate hosts in natural transmission cycles, in: The Togaviruses ( R. W. Schlesinger, ed.), pp. 175–228, Academic Press, New York.

    Google Scholar 

  • Cleaves, G. R., and Dubin, D. T., 1979, Methylation status of intracellular dengue type 2 40 S RNA, Virology 96: 159–165.

    Article  PubMed  CAS  Google Scholar 

  • Cornelissen, B. J. C., Brederode, F. T., Veeneman, G. H., van Boom, J. H., and Bol, J. F., 1983, Complete nucleotide sequence of alfalfa mosaic virus RNA 2, Nucleic Acids Res. 11: 3019–3025.

    Article  PubMed  CAS  Google Scholar 

  • Dalgarno, L., Rice, C. M., and Strauss, J. H., 1983, Ross River virus 265 RNA: Complete nucleotide sequence and deduced sequences of the encoded structural proteins, Virology 129: 170–187.

    Article  PubMed  CAS  Google Scholar 

  • Dalgarno, L., Strauss, J. H., and Rice, C. M., 1986, Partial nucleotide sequence of Murray Valley encephalitis virus: Comparison of the encoded polypeptides with yellow fever virus structural and nonstructural proteins, j. Mol. Biol., in press.

    Google Scholar 

  • Deubel, V., Crouset, J., Bénichou, D., Digoutte, J.-P., Bouloy, M., and Girard, M., 1983, Preliminary characterization of the ribonucleic acid of yellow fever virus, Ann. Virol. 134E: 581–588.

    Google Scholar 

  • Dixon, L. K., and Hohn, T., 1984, Initiation of translation of the cauliflower mosaic virus genome from a polycistronic mRNA: Evidence from deletion mutagenesis, EMBO J. 3: 2731–2736.

    PubMed  CAS  Google Scholar 

  • Docherty, K., Carroll, R. J., and Steiner, D. F., 1982, Conversion of proinsulin to insulin: Involvement of a 31,500 molecular weight thiol protease, Proc. Natl. Acad. Sci. U.S.A. 79: 4613–4617.

    Article  PubMed  CAS  Google Scholar 

  • Domingo, E., Sabo, D. Taniguchi, T., and Weissman, C., 1978, Nucleotide sequence heterogeneity of an RNA phage population, Cell 13: 735–744.

    CAS  Google Scholar 

  • Dorner, A., J. Semler, B. L., Jackson, R. J., Hanecak, R., Duprey, E., and Wimmer, E., 1984, In vitro translation of poliovirus RNA: Utilization of internal initiation sites in reticulocyte lysate, J. Virol. 50: 507–514.

    CAS  Google Scholar 

  • Franssen, H., Leunissen, J., Goldbach, R., Lomonossoff, G., and Zimmern, D. 1984, Homologous sequences in nonstructural proteins from cowpea mosaic virus and picornaviruses, EMBO J. 3: 855–861.

    PubMed  CAS  Google Scholar 

  • Garoff, H., Frischauf, A.-M., Simons, K., Lehrach, H., and Delius, H., 1980a, Nucleotide sequence of cDNA coding for Semliki Forest virus membrane glycoproteins, Nature (London) 288: 236–241.

    Article  CAS  Google Scholar 

  • Garoff, H., Frischauf, A.-M., Simons, K., Lehrach, H., and Delius, H., 1980b, The capsid protein of Semliki Forest virus has clusters of basic amino acids and prolines in its amino-terminal region, Proc. Natl. Acad. Sci. U.S.A. 77: 6376–6380.

    Article  PubMed  CAS  Google Scholar 

  • Gentry, M. K., Henchal, E. A., McCown, J. M., Brandt, W. E., and Dalrymple, J. M., 1982, Identification of distinct antigenic determinants on dengue-2 virus using monoclonal antibodies, Am. J. Trop. Med. Hyg. 31: 548–555.

    PubMed  CAS  Google Scholar 

  • Goelet, P., Lomonossoff, G. P., Butler, P. J. G., Akam, M. E., Gait, M. J., and Kam, J., 1982, Nucleotide sequence of tobacco mosaic virus RNA, Proc. Natl. Acad. Sci. U.S.A. 79: 5818–5822.

    Article  PubMed  CAS  Google Scholar 

  • Grantham, R., Gautier, C., Guoy, M., Jacobzone, M., and Mercier, R., 1981, Codon catalog usage is a genome strategy modulated for gene expressivity, Nucleic Acids Res. 9: r43 - r74.

    Article  PubMed  CAS  Google Scholar 

  • Hahn, C. S., Strauss, E. G., and Strauss, J. H., 1985, Sequence analysis of three Sindbis virus mutants temperature-sensitive in the capsid protein autoprotease, Proc. Natl. Acad. Sci. U.S.A. 82: 4648–4652.

    Article  PubMed  CAS  Google Scholar 

  • Haseloff, J., Goelet, P., Zimmern, D., Ahlquist, P., Dasgupta, R., and Kaesberg, P., 1984, Striking similarities in amino acid sequence among nonstructural proteins encoded by RNA viruses that have dissimilar genomic organization, Proc. Natl. Acad. Sci. U.S.A. 81: 4358–4362.

    Article  PubMed  CAS  Google Scholar 

  • Heinz, F. X., and Kunz, C., 1979, Protease treatment and chemical crosslinking of a flavi-virus: Tick-borne encephalitis virus, Arch. Virol. 60: 207–216.

    Article  PubMed  CAS  Google Scholar 

  • Heinz, F. X., and Kunz, C., 1982, Molecular epidemiology of tick-borne encephalitis virus: Peptide mapping of large non-structural proteins of European isolates and comparison with other flaviviruses, J. Gen. Virol. 62: 271–285.

    Article  PubMed  CAS  Google Scholar 

  • Heinz, F. X., Berger, R., Majdic, O., Knapp, W., and Kunz, C., 1982, Monoclonal antibodies to the structural glycoprotein of tick-borne encephalitis virus, Infect. Immun. 37: 869–874.

    PubMed  CAS  Google Scholar 

  • Heinz, F. X., Berger, R., Tuma, W., and Kunz, C., 1983a, A topological and functional model of epitopes on the structural glycoprotein of tick-borne encephalitis virus defined by monoclonal antibodies, Virology 126: 525–537.

    Article  PubMed  CAS  Google Scholar 

  • Heinz, F. X., Berger, R., Tuma, W., and Kunz, C., 1983b, Location of immunodominant antigenic determinants on fragments of the tick-borne encephalitis virus glycoproteins: Evidence for two different mechanisms by which antibodies mediate neutralization and hemagglutination inhibition, Virology 130: 485–501.

    Article  PubMed  CAS  Google Scholar 

  • Heinz, F. X., Tuma, W., Guirakhoo, F., Berger, R., and Kunz, C., 1984, Immunogenicity of tick-borne encephalitis virus glycoprotein fragments: Epitope-specific analysis of the antibody response, J. Gen. Virol. 65: 1921–1929.

    Article  PubMed  CAS  Google Scholar 

  • Henchal, E. A., Gentry, M. K., McCown, J. M., and Brandt, W. E., 1982, Dengue virus-specific and flavivirus group determinants identified with monoclonal antibodies by indirect immunofluorescence, Am. J. Trop. Med. Hyg. 31: 830–836.

    PubMed  CAS  Google Scholar 

  • Holland, J., Spindler, K., Horodyski, F., Grabau, E., Nichol, S., and VandePol, S., 1982, Rapid evolution of RNA genomes, Science 215: 1577–1585.

    Article  PubMed  CAS  Google Scholar 

  • Hughes, S., Mellstrom, K., Kosik, E., Tamanoi, F., and Brugge, J., 1984, Mutation of a termination codon affects src initiation, Mol. Cell. Biol. 4: 1738–1746.

    PubMed  CAS  Google Scholar 

  • Kamer, G., and Argos, P., 1984, Primary structural comparison of RNA-dependent polymerases from plant, animal and bacterial viruses, Nucleic Acids Res. 12: 7269–7282.

    Article  PubMed  CAS  Google Scholar 

  • Kimura-Kuroda, J., and Yasui, K., 1983, Topographical analysis of antigenic determinants on envelope glycoprotein V3 (E) of Japanese encephalitis virus, using monoclonal antibodies, J. Virol. 45: 124–132.

    PubMed  CAS  Google Scholar 

  • Kitamura, N., Semler, B. L., Rothberg, P. G., Larsen, G. R., Adler, C. J., Dorner, A. J., Emini, E. A., Hanecak, R., Lee, J. J., van der Werf, S., Anderson, C. W., and Wimmer, E., 1981, Primary structure, gene organization and polypeptide expression of poliovirus RNA, Nature (London) 291: 547–553.

    Article  CAS  Google Scholar 

  • Kozak, M., 1983, Comparison of initiation of protein synthesis in procaryotes, eucaryotes, and organelles, Microbiol. Rev. 47: 1–45.

    PubMed  CAS  Google Scholar 

  • Kozak, M., 1984a, Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs, Nucleic Acids Res. 12: 857–872.

    Article  PubMed  CAS  Google Scholar 

  • Kozak, M., 1984b, Selection of initiation sites by eucaryotic ribosomes: Effect of inserting AUG triplets upstream from the coding sequence for preproinsulin, Nucleic Acids Res. 12: 3873–3893.

    Article  PubMed  CAS  Google Scholar 

  • Kyte, J., and Doolittle, R. F., 1982, A simple method for displaying the hydropathic character of a protein, J. Mol. Biol. 157: 105–132.

    Article  PubMed  CAS  Google Scholar 

  • Liu, C.-C., Simonsen, C. C., and Levinson, A. D., 1984, Initiation of translation at internal AUG codons in mammalian cells, Nature (London) 309: 82–85.

    Article  CAS  Google Scholar 

  • Lomedico, P. T., and McAndrew, S. J., 1982, Eukaryotic ribosomes can recognize preproin-sulin initiation codons irrespective of their position relative to the 5’ end of mRNA, Nature (London) 299: 221–226.

    Article  CAS  Google Scholar 

  • Lomonossoff, G. B., and Shanks, M., 1983, The nucleotide sequence of cowpea mosaic virus B RNA, EMBO J. 2: 2253–2258.

    PubMed  CAS  Google Scholar 

  • Mertens, P. P. C., and Dobos, P., 1982, Messenger RNA of infectious pancreatic necrosis virus is polycistronic, Nature (London) 297: 243–246.

    Article  CAS  Google Scholar 

  • Monath, T. P., Kinney, R. M., Schlesinger, J. J., Brandriss, M. W., and P. Brès, 1983, Ontogeny of yellow fever 17D vaccine: RNA oligonucleotide fingerprint and monoclonal antibody analyses of vaccines produced world-wide, J. Gen. Vitol. 64: 627–637.

    Article  Google Scholar 

  • Monckton, R. P., and Westaway, E. G., 1982, Restricted translation of the genome of the flavivirus Kunjin in Vitro, J. Gen. virol. 63: 227–232.

    Article  PubMed  CAS  Google Scholar 

  • Naeve, C. W., and Trent, D. W., 1978, Identification of Saint Louis encephalitis virus mRNA, J. Vitol. 25: 535–545.

    CAS  Google Scholar 

  • Ou, J.-H., Trent, D. W., and Strauss, J. H., 1982, The 3’ noncoding regions of alphavirus RNAs contain repeating sequences, J. Mol. Biol. 156: 719–730.

    Article  PubMed  CAS  Google Scholar 

  • Palmenberg, A. C., Kirby, E. M., Janda, M. R., Drake, N. L., Duke, G. M., Potratz, K. F., and Collett, M. S., 1984, The nucleotide and deduced amino acid sequence of the encephalomyocarditis viral polyprotein coding region, Nucleic Acids Res. 12: 2969–2985.

    Article  PubMed  CAS  Google Scholar 

  • Peiris, J. S. M., Porterfield, J. S., and Roehrig, J. T., 1982, Monoclonal antibodies against the flavivirus West Nile, J. Gen. Vitol. 58: 283–289.

    Article  CAS  Google Scholar 

  • Pelham, H. R. B., 1978, Leaky UAG termination codon in tobacco mosaic virus RNA, Nature (London) 272: 469–471.

    Article  CAS  Google Scholar 

  • Perlman, D., and Halvorson, H. O. 1983, A putative signal peptidase recognition site and sequence in eukaryotic and prokaryotic signal peptides, J. Mol. Biol. 167: 391–409.

    Article  PubMed  CAS  Google Scholar 

  • Porterfield, J. S., 1980, Antigenic characteristics and classification of Togaviridae, in: The Togaviruses ( R. W. Schlesinger, ed.), pp. 13–46, Academic Press, New York.

    Google Scholar 

  • Reanney, D. C., 1982, The evolution of RNA viruses, Annu. Rev. Microbiol. 36: 47–73.

    Article  PubMed  CAS  Google Scholar 

  • Rice, C. M., and Strauss, J. H., 1981a, Nucleotide sequence of the 26S mRNA of Sindbis virus and deduced sequence of the encoded virus structural proteins, Proc. Natl. Acad. Sci. U.S.A. 78: 2062–2066.

    Article  PubMed  CAS  Google Scholar 

  • Rice, C. M., and Strauss, J. H., 1981b, Synthesis, cleavage, and sequence analysis of cDNA complementary to the 26S mRNA of Sindbis virus, J. Mol. Biol. 150: 315–340.

    Article  PubMed  CAS  Google Scholar 

  • Rice, C. M., Lenches, E. M., Eddy, S. R., Shin, S. J., Sheets, R. L., and Strauss, J. H., 1985, Nucleotide sequence of yellow fever virus: Implications for flavivirus gene expression and evolution, Science 229: 726–733.

    Article  PubMed  CAS  Google Scholar 

  • Rice, C. M., Dalgarno, L., Strauss, E. G., and Strauss, J. H., 1986a, cDNA cloning of flavivirus genomes for comparative analysis and expression (submitted).

    Google Scholar 

  • Rice, C. M., Aebersold, R., Teplow, D. B., Pata, J., Bell, J. R., Vorndam, A. V., Trent, D. W., Brandriss, M. W., Schlesinger, J. J., and Strauss, J. H., 1986b, Partial N-terminal amino acid sequences of three nonstructural proteins of two flaviviruses, submitted.

    Google Scholar 

  • Roehrig, J. T., Mathews, J. H., and Trent, D. W., 1983, Identification of epitopes on the E glycoprotein of St. Louis encephalitis virus using monoclonal antibodies, Virology 128: 118–126.

    CAS  Google Scholar 

  • Russell, G. J., Walker, P. M. B., Elton, R. A., and Subak-Sharpe, J. H., 1976, Doublet frequency analysis of fractionated vertebrate nuclear DNA, J. Mol. Biol. 108: 1–23.

    Article  PubMed  CAS  Google Scholar 

  • Russell, P. K., Brandt, W. E., and Dalrymple, J. M., 1980, Chemical and antigenic structure of flaviviruses, in: The Togaviruses ( R. W. Schlesinger, ed.), pp. 503–529, Academic Press, New York.

    Google Scholar 

  • Salser, W., 1977, Globin mRNA sequences: Analysis of base-pairing and evolutionary implications, Cold Spring Harbor Symp. Quant. Biol. 42: 985–1002.

    Article  Google Scholar 

  • Schlesinger, J. J., Brandriss, M. W., and Monath, T. P., 1983, Monoclonal antibodies distinguish between wild and vaccine strains of yellow fever virus by neutralization, hem-agglutination inhibition, and immune precipitation of the virus envelope protein, Virology 125: 8–17.

    Article  PubMed  CAS  Google Scholar 

  • Schlesinger, J. J., Walsh, E. E., and Brandriss, M. W., 1984, Analysis of 17D yellow fever virus envelope protein epitopes using monoclonal antibodies, J. Gen. Virol. 65: 1637–1644.

    Article  PubMed  Google Scholar 

  • Shapiro, D., Brandt, W. E., and Russell, P. K., 1972, Change involving a viral membrane glycoprotein during morphogenesis of group B arboviruses, Virology 50: 906–911.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro, D., Kos, K. A., and Russell, P. K., 1973, Protein synthesis in Japanese encephalitis virus-infected cells, Virology 56: 95–109.

    Article  PubMed  CAS  Google Scholar 

  • Smith, G. W., and Wright, P. J., 1985, Synthesis of proteins and glycoproteins in dengue type 2 virus-infected Vero and Aedes albopictus cells, J. Gen. Virol. 66: 559–571.

    Article  PubMed  CAS  Google Scholar 

  • Stanway, G., Hughes, P. J., Mountford, R. C., Minor, P. D., and Almond, J. W., 1984, The complete nucleotide sequence of a common cold virus: Human rhinovirus 14, Nucleic Acids Res. 12: 7859–7875.

    Article  PubMed  CAS  Google Scholar 

  • Stephenson, J. R., Lee, J. M., and Wilton-Smith, P. D., 1984, Antigenic variation among members of the tick-borne encephalitis complex, J. Gen. Virol. 65: 81–89.

    Article  PubMed  CAS  Google Scholar 

  • Strauss, E. G., and Strauss, J. H., 1983, Replication strategies of the single stranded RNA viruses of eukaryotes, Curr. Top. Microbiol. Immunol. 105: 1–98.

    Article  PubMed  CAS  Google Scholar 

  • Strauss, E. G., and Strauss, J. H., 1985, Assembly of enveloped animal viruses, in: Virus Structure and Assembly S. J. Casjens, ed.), pp. 205–234, Jones and Bartlett, Portola Valley, California.

    Google Scholar 

  • Strauss, E. G., Rice, C. M., and Strauss, J. H., 1983, Sequence coding for the alphavirus nonstructural proteins is interrupted by an opal termination codon, Proc. Natl. Acad. Sci. U.S.A. 80: 5271–5275.

    Article  PubMed  CAS  Google Scholar 

  • Strauss, E. G., Rice, C. M., and Strauss, J. H., 1984, Complete nucleotide sequence of the genomic RNA of Sindbis virus, Virology 133: 92–110.

    Article  PubMed  CAS  Google Scholar 

  • Svitkin, Y. V., Lyapustin, V. N., Lashkevich, V. A., and Agol, V. I., 1978. A comparative study on translation of flavivirus and picornavirus RNAs in vitro: Apparently different modes of protein synthesis, FEBS Lett. 96: 211–215.

    Article  PubMed  CAS  Google Scholar 

  • Svitkin, Y. V., Ugarova, T. Y., Chernovskaya, T. V., Lyapustin, V. N., Lashkevich, V. A., and Agol, V. I., 1981, Translation of tick-borne encephalitis virus (flavivirus) genome in vitro: Synthesis of two structural polypetides, Virology 110: 26–34.

    Article  PubMed  CAS  Google Scholar 

  • Svitkin, Y. V., Lyapustin, V. N., Lashkevich, V. A., and Agol, V. I., 1984, Differences between translation products of tick-borne encephalitis virus RNA in cell-free systems from Krebs-2 cells and rabbit reticulocytes: Involvement of membranes in the processing of nascent precursors of flavivirus structural proteins, Virology 135: 536–541.

    Article  PubMed  CAS  Google Scholar 

  • Takio, K., Towatari, T., Katunuma, N, Teller, D. C., and Titani, K., 1983, Homology of amino acid sequences of rat liver cathepsins B and H with that of papain, Proc. Natl. Acad. Sci. U.S.A. 80: 3666–3670.

    Article  PubMed  CAS  Google Scholar 

  • Tinoco, I., Borer, P. N., Dengler, B., Levine, M. D., Uhlenbeck, O. C., Crothers, D. M., and Gralla, J., 1973, Improved estimation of secondary structure in ribonucleic acids, Nature (London) New Biol. 246: 40–41.

    CAS  Google Scholar 

  • Trent, D. W., Grant, J. A., Rosen, L., and Monath, T. P., 1983, Genetic variation among dengue 2 viruses of different geographic origin, Virology 128: 271–284.

    Article  PubMed  CAS  Google Scholar 

  • Vezza, A. C., Rosen, L., Repik, P., Dalrymple, J., and Bishop, D. H. L., 1980, Characterization of the viral RNA species of prototype dengue viruses, Am. J. Trop. Med. Hyg. 29: 643–652.

    PubMed  CAS  Google Scholar 

  • Walter, P., and Blobel, G., 1982, Mechanism of protein translocation across the endoplasmic reticulum, Biochem. Soc. Symp. 47: 183–191.

    PubMed  CAS  Google Scholar 

  • Welch, W. J., and Sefton, B. M., 1979, Two small virus-specific polypeptides are produced during infection with Sindbis virus, J. Virol. 29: 1186–1195.

    PubMed  CAS  Google Scholar 

  • Wengler, G., and Wengler, G., 1981, Terminal sequences of the genome and replicativeform RNA of the flavivirus West Nile virus: Absence of poly(A) and possible role in RNA replication, Virology 113: 544–555.

    Article  PubMed  CAS  Google Scholar 

  • Wengler, G., Wengler, G., and Gross, H. J., 1978, Studies on virus-specific nucleic acids synthesized in vertebrate and mosquito cells infected with flaviviruses, Virology 89: 423–437.

    Article  PubMed  CAS  Google Scholar 

  • Wengler, G., Beato, M., and Wengler, G., 1979, In vitro translation of 42S virus-specific RNA from cells infected with the flavivirus West Nile virus, Virology 96: 516–529.

    CAS  Google Scholar 

  • Westaway, E. G., 1973, Proteins specified by group B togaviruses in mammalian cells during productive infections, Virology 51: 454–465.

    Article  PubMed  CAS  Google Scholar 

  • Westaway, E. G., 1975, The proteins of Murray Valley encephalitis virus, J. Gen. Virol. 27: 283–292.

    Article  Google Scholar 

  • Westaway, E. G., 1977, Strategy of the flavivirus genome: Evidence for multiple internal initiation of translation of proteins specified by Kunjin virus in mammalian cells, Virology 80: 320–335.

    Article  PubMed  CAS  Google Scholar 

  • Westaway, E. G., 1980, Replication of flaviviruses, in: The Togaviruses ( R. W. Schlesinger, ed.), pp. 531–581, Academic Press, New York.

    Google Scholar 

  • Westaway, E. G., and Shew, M., 1977, Proteins and glycoproteins specified by the flavivirus Kunjin, Virology 80: 309–319.

    Article  PubMed  CAS  Google Scholar 

  • Westaway, E. G., McKimm, J. L., and McLeod, L. G., 1977, Heterogeneity among flavivirus proteins separated in slab gels, Arch. Virol. 53: 305–312.

    Article  PubMed  CAS  Google Scholar 

  • Westaway, E. G., Schlesinger, R. W., Dalrymple, J. M., and Trent, D. W., 1980, Nomenclature of flavivirus-specified proteins, Intervirology 14: 114–117.

    Article  PubMed  CAS  Google Scholar 

  • Westaway, E. G., Speight, G., and Endo, L., 1984, Gene order of translation of the flavivirus Kunjin: Further evidence of internal initiation in vivo, Virus Res. 1: 333–350.

    Article  PubMed  CAS  Google Scholar 

  • Wright, P. J., 1982, Envelope protein of the flavivirus Kunjin is apparently not glycosylated, J. Gen. Virol. 59: 29–38.

    Article  PubMed  CAS  Google Scholar 

  • Wright, P. J., and Warr, H. M., 1985, Peptide mapping of envelope-related glycoproteins specified by the flaviviruses Kunjin and West Nile, J. Gen. Virol. 66: 597–601.

    Article  PubMed  CAS  Google Scholar 

  • Wright, P. J., Bowden, D. S., and Westaway, E. G., 1977, Unique peptide maps of the three largest proteins specified by the flavivirus Kunjin, J. Virol. 24: 651–661.

    PubMed  CAS  Google Scholar 

  • Wright, P. J., Warr, H. M., and Westaway, E. G., 1981, Synthesis of glycoproteins in cells infected by the flavivirus Kunjin, Virology 109: 418–427.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Rice, C.M., Strauss, E.G., Strauss, J.H. (1986). Structure of the Flavivirus Genome. In: Schlesinger, S., Schlesinger, M.J. (eds) The Togaviridae and Flaviviridae. The Viruses. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0785-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0785-4_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0787-8

  • Online ISBN: 978-1-4757-0785-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics