Structure of the Flavivirus Genome

  • Charles M. Rice
  • Ellen G. Strauss
  • James H. Strauss
Part of the The Viruses book series (VIRS)


The flaviviruses were formerly classified as a genus in the family Togaviridae. They have now been elevated to family status, family Flaviviridae, in part because of differences in replication and assembly (Westaway, 1980) (Chapter 11) and in part because their genome structure is quite different from that of the alphaviruses (Rice et al., 1985) (compare with Chapter 3). With the determination of the complete nucleotide sequence of the yellow fever virus genome and a large portion of the Murray Valley encephalitis virus genome, it has become clear that these viruses represent a distinct group among the plus-stranded RNA viruses. This chapter will focus on the implications of these and other recent sequence data on flavivirus gene expression, replication, and evolution.


West Nile Virus Encephalitis Virus Yellow Fever Nonstructural Protein Sindbis Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahlquist, P., Dasgupta, R., and Kaesberg, P., 1984, Nucleotide sequence of the brome mosaic virus genome and implications for viral replication, J. Mol. Biol. 172: 369–383.PubMedCrossRefGoogle Scholar
  2. Ahlquist, P., Strauss, E. G., Rice, C. M., Strauss, J. H., Haseloff, J., and Zimmern, D., 1985, Sindbis virus proteins nsPl and nsP2 contain homology to nonstructural proteins from several RNA plant viruses, J. Virol. 53:536–542.Google Scholar
  3. Bell, J. R., Kinney, R. M., Trent, D. W., Strauss, E. G., and Strauss, J. H., 1984, An evolutionary tree relating eight alphaviruses, based on amino-terminal sequences of their glycoproteins, Proc. Natl. Acad. Sci. U.S.A. 81: 4702–4706.PubMedCrossRefGoogle Scholar
  4. Bell, J. R., Kinney, R. M., Trent, D. W., Lenches, E. M., Dalgamo, L., and Strauss, J. H., 1985, N-terminal amino acid sequences of structural proteins of three flaviviruses, Virology 143: 224–229.PubMedCrossRefGoogle Scholar
  5. Bird, A. P., 1980, DNA methylation and the frequency of CpG in animal DNA, Nucleic Acids Res. 8: 1499–1504.PubMedCrossRefGoogle Scholar
  6. Blok, J., Henchal, E. A., and Gorman, B. M., 1984, Comparison of dengue viruses and some other flaviviruses by cDNA—RNA hybridization analysis and detection of a close relationship between dengue virus serotype 2 and Edge Hill virus, J. Gen. Virol. 65: 2173–2181.PubMedCrossRefGoogle Scholar
  7. Boege, U., Wengler, G., Wengler, G., and Wittmann-Liebold, B., 1981, Primary structure of the core proteins of the alphaviruses Semliki Forest virus and Sindbis virus, Virology 113: 293–303.PubMedCrossRefGoogle Scholar
  8. Boege, U., Heinz, F X, Wengler, G., and Kunz, C., 1983, Amino acid compositions and amino-terminal sequences of the structural proteins of a flavivirus, European tick-borne encephalitis virus, Virology 126: 651–657.PubMedCrossRefGoogle Scholar
  9. Boulton, R. W., and Westaway, E. G., 1977, Togavirus RNA: Reversible effect of urea on genomes and absence of subgenomic viral RNA in Kunjin virus-infected cells, Arch. Virol. 55: 201–208.PubMedCrossRefGoogle Scholar
  10. Brinton, M. A., Fernandez, A. V., and Amato, J., 1986, Sequence analysis of the 3’ terminus of West Nile virus, strain E101, genome RNAGoogle Scholar
  11. Cardiff, R. D., and Lund, J. K., 1976, Distribution of dengue-2 antigens by electron immunocytochemistry, Infect. Immun. 13: 1699–1709.PubMedGoogle Scholar
  12. Carroll, A. R., Rowlands, D. J., and Clarke, B. E., 1984, The complete nucleotide sequence of the RNA coding for the primary translation product of foot-and-mouth disease virus, Nucleic Acids Res. 12: 2461–2472.PubMedCrossRefGoogle Scholar
  13. Castle, E., Nowak, T., Leidner, U., Wengler, G., and Wengler, G., 1985, Sequence analysis of the viral core protein and the membrane-associated proteins V1 and NV2 of the flavivirus West Nile virus and of the genome sequence for these proteins, Virology 145: 227–236.PubMedCrossRefGoogle Scholar
  14. Chamberlain, R. W., 1980, Epidemiology of arthropod-borne Togaviruses: The role of arthropods as hosts and vectors and of vertebrate hosts in natural transmission cycles, in: The Togaviruses ( R. W. Schlesinger, ed.), pp. 175–228, Academic Press, New York.Google Scholar
  15. Cleaves, G. R., and Dubin, D. T., 1979, Methylation status of intracellular dengue type 2 40 S RNA, Virology 96: 159–165.PubMedCrossRefGoogle Scholar
  16. Cornelissen, B. J. C., Brederode, F. T., Veeneman, G. H., van Boom, J. H., and Bol, J. F., 1983, Complete nucleotide sequence of alfalfa mosaic virus RNA 2, Nucleic Acids Res. 11: 3019–3025.PubMedCrossRefGoogle Scholar
  17. Dalgarno, L., Rice, C. M., and Strauss, J. H., 1983, Ross River virus 265 RNA: Complete nucleotide sequence and deduced sequences of the encoded structural proteins, Virology 129: 170–187.PubMedCrossRefGoogle Scholar
  18. Dalgarno, L., Strauss, J. H., and Rice, C. M., 1986, Partial nucleotide sequence of Murray Valley encephalitis virus: Comparison of the encoded polypeptides with yellow fever virus structural and nonstructural proteins, j. Mol. Biol., in press.Google Scholar
  19. Deubel, V., Crouset, J., Bénichou, D., Digoutte, J.-P., Bouloy, M., and Girard, M., 1983, Preliminary characterization of the ribonucleic acid of yellow fever virus, Ann. Virol. 134E: 581–588.Google Scholar
  20. Dixon, L. K., and Hohn, T., 1984, Initiation of translation of the cauliflower mosaic virus genome from a polycistronic mRNA: Evidence from deletion mutagenesis, EMBO J. 3: 2731–2736.PubMedGoogle Scholar
  21. Docherty, K., Carroll, R. J., and Steiner, D. F., 1982, Conversion of proinsulin to insulin: Involvement of a 31,500 molecular weight thiol protease, Proc. Natl. Acad. Sci. U.S.A. 79: 4613–4617.PubMedCrossRefGoogle Scholar
  22. Domingo, E., Sabo, D. Taniguchi, T., and Weissman, C., 1978, Nucleotide sequence heterogeneity of an RNA phage population, Cell 13: 735–744.Google Scholar
  23. Dorner, A., J. Semler, B. L., Jackson, R. J., Hanecak, R., Duprey, E., and Wimmer, E., 1984, In vitro translation of poliovirus RNA: Utilization of internal initiation sites in reticulocyte lysate, J. Virol. 50: 507–514.Google Scholar
  24. Franssen, H., Leunissen, J., Goldbach, R., Lomonossoff, G., and Zimmern, D. 1984, Homologous sequences in nonstructural proteins from cowpea mosaic virus and picornaviruses, EMBO J. 3: 855–861.PubMedGoogle Scholar
  25. Garoff, H., Frischauf, A.-M., Simons, K., Lehrach, H., and Delius, H., 1980a, Nucleotide sequence of cDNA coding for Semliki Forest virus membrane glycoproteins, Nature (London) 288: 236–241.CrossRefGoogle Scholar
  26. Garoff, H., Frischauf, A.-M., Simons, K., Lehrach, H., and Delius, H., 1980b, The capsid protein of Semliki Forest virus has clusters of basic amino acids and prolines in its amino-terminal region, Proc. Natl. Acad. Sci. U.S.A. 77: 6376–6380.PubMedCrossRefGoogle Scholar
  27. Gentry, M. K., Henchal, E. A., McCown, J. M., Brandt, W. E., and Dalrymple, J. M., 1982, Identification of distinct antigenic determinants on dengue-2 virus using monoclonal antibodies, Am. J. Trop. Med. Hyg. 31: 548–555.PubMedGoogle Scholar
  28. Goelet, P., Lomonossoff, G. P., Butler, P. J. G., Akam, M. E., Gait, M. J., and Kam, J., 1982, Nucleotide sequence of tobacco mosaic virus RNA, Proc. Natl. Acad. Sci. U.S.A. 79: 5818–5822.PubMedCrossRefGoogle Scholar
  29. Grantham, R., Gautier, C., Guoy, M., Jacobzone, M., and Mercier, R., 1981, Codon catalog usage is a genome strategy modulated for gene expressivity, Nucleic Acids Res. 9: r43 - r74.PubMedCrossRefGoogle Scholar
  30. Hahn, C. S., Strauss, E. G., and Strauss, J. H., 1985, Sequence analysis of three Sindbis virus mutants temperature-sensitive in the capsid protein autoprotease, Proc. Natl. Acad. Sci. U.S.A. 82: 4648–4652.PubMedCrossRefGoogle Scholar
  31. Haseloff, J., Goelet, P., Zimmern, D., Ahlquist, P., Dasgupta, R., and Kaesberg, P., 1984, Striking similarities in amino acid sequence among nonstructural proteins encoded by RNA viruses that have dissimilar genomic organization, Proc. Natl. Acad. Sci. U.S.A. 81: 4358–4362.PubMedCrossRefGoogle Scholar
  32. Heinz, F. X., and Kunz, C., 1979, Protease treatment and chemical crosslinking of a flavi-virus: Tick-borne encephalitis virus, Arch. Virol. 60: 207–216.PubMedCrossRefGoogle Scholar
  33. Heinz, F. X., and Kunz, C., 1982, Molecular epidemiology of tick-borne encephalitis virus: Peptide mapping of large non-structural proteins of European isolates and comparison with other flaviviruses, J. Gen. Virol. 62: 271–285.PubMedCrossRefGoogle Scholar
  34. Heinz, F. X., Berger, R., Majdic, O., Knapp, W., and Kunz, C., 1982, Monoclonal antibodies to the structural glycoprotein of tick-borne encephalitis virus, Infect. Immun. 37: 869–874.PubMedGoogle Scholar
  35. Heinz, F. X., Berger, R., Tuma, W., and Kunz, C., 1983a, A topological and functional model of epitopes on the structural glycoprotein of tick-borne encephalitis virus defined by monoclonal antibodies, Virology 126: 525–537.PubMedCrossRefGoogle Scholar
  36. Heinz, F. X., Berger, R., Tuma, W., and Kunz, C., 1983b, Location of immunodominant antigenic determinants on fragments of the tick-borne encephalitis virus glycoproteins: Evidence for two different mechanisms by which antibodies mediate neutralization and hemagglutination inhibition, Virology 130: 485–501.PubMedCrossRefGoogle Scholar
  37. Heinz, F. X., Tuma, W., Guirakhoo, F., Berger, R., and Kunz, C., 1984, Immunogenicity of tick-borne encephalitis virus glycoprotein fragments: Epitope-specific analysis of the antibody response, J. Gen. Virol. 65: 1921–1929.PubMedCrossRefGoogle Scholar
  38. Henchal, E. A., Gentry, M. K., McCown, J. M., and Brandt, W. E., 1982, Dengue virus-specific and flavivirus group determinants identified with monoclonal antibodies by indirect immunofluorescence, Am. J. Trop. Med. Hyg. 31: 830–836.PubMedGoogle Scholar
  39. Holland, J., Spindler, K., Horodyski, F., Grabau, E., Nichol, S., and VandePol, S., 1982, Rapid evolution of RNA genomes, Science 215: 1577–1585.PubMedCrossRefGoogle Scholar
  40. Hughes, S., Mellstrom, K., Kosik, E., Tamanoi, F., and Brugge, J., 1984, Mutation of a termination codon affects src initiation, Mol. Cell. Biol. 4: 1738–1746.PubMedGoogle Scholar
  41. Kamer, G., and Argos, P., 1984, Primary structural comparison of RNA-dependent polymerases from plant, animal and bacterial viruses, Nucleic Acids Res. 12: 7269–7282.PubMedCrossRefGoogle Scholar
  42. Kimura-Kuroda, J., and Yasui, K., 1983, Topographical analysis of antigenic determinants on envelope glycoprotein V3 (E) of Japanese encephalitis virus, using monoclonal antibodies, J. Virol. 45: 124–132.PubMedGoogle Scholar
  43. Kitamura, N., Semler, B. L., Rothberg, P. G., Larsen, G. R., Adler, C. J., Dorner, A. J., Emini, E. A., Hanecak, R., Lee, J. J., van der Werf, S., Anderson, C. W., and Wimmer, E., 1981, Primary structure, gene organization and polypeptide expression of poliovirus RNA, Nature (London) 291: 547–553.CrossRefGoogle Scholar
  44. Kozak, M., 1983, Comparison of initiation of protein synthesis in procaryotes, eucaryotes, and organelles, Microbiol. Rev. 47: 1–45.PubMedGoogle Scholar
  45. Kozak, M., 1984a, Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs, Nucleic Acids Res. 12: 857–872.PubMedCrossRefGoogle Scholar
  46. Kozak, M., 1984b, Selection of initiation sites by eucaryotic ribosomes: Effect of inserting AUG triplets upstream from the coding sequence for preproinsulin, Nucleic Acids Res. 12: 3873–3893.PubMedCrossRefGoogle Scholar
  47. Kyte, J., and Doolittle, R. F., 1982, A simple method for displaying the hydropathic character of a protein, J. Mol. Biol. 157: 105–132.PubMedCrossRefGoogle Scholar
  48. Liu, C.-C., Simonsen, C. C., and Levinson, A. D., 1984, Initiation of translation at internal AUG codons in mammalian cells, Nature (London) 309: 82–85.CrossRefGoogle Scholar
  49. Lomedico, P. T., and McAndrew, S. J., 1982, Eukaryotic ribosomes can recognize preproin-sulin initiation codons irrespective of their position relative to the 5’ end of mRNA, Nature (London) 299: 221–226.CrossRefGoogle Scholar
  50. Lomonossoff, G. B., and Shanks, M., 1983, The nucleotide sequence of cowpea mosaic virus B RNA, EMBO J. 2: 2253–2258.PubMedGoogle Scholar
  51. Mertens, P. P. C., and Dobos, P., 1982, Messenger RNA of infectious pancreatic necrosis virus is polycistronic, Nature (London) 297: 243–246.CrossRefGoogle Scholar
  52. Monath, T. P., Kinney, R. M., Schlesinger, J. J., Brandriss, M. W., and P. Brès, 1983, Ontogeny of yellow fever 17D vaccine: RNA oligonucleotide fingerprint and monoclonal antibody analyses of vaccines produced world-wide, J. Gen. Vitol. 64: 627–637.CrossRefGoogle Scholar
  53. Monckton, R. P., and Westaway, E. G., 1982, Restricted translation of the genome of the flavivirus Kunjin in Vitro, J. Gen. virol. 63: 227–232.PubMedCrossRefGoogle Scholar
  54. Naeve, C. W., and Trent, D. W., 1978, Identification of Saint Louis encephalitis virus mRNA, J. Vitol. 25: 535–545.Google Scholar
  55. Ou, J.-H., Trent, D. W., and Strauss, J. H., 1982, The 3’ noncoding regions of alphavirus RNAs contain repeating sequences, J. Mol. Biol. 156: 719–730.PubMedCrossRefGoogle Scholar
  56. Palmenberg, A. C., Kirby, E. M., Janda, M. R., Drake, N. L., Duke, G. M., Potratz, K. F., and Collett, M. S., 1984, The nucleotide and deduced amino acid sequence of the encephalomyocarditis viral polyprotein coding region, Nucleic Acids Res. 12: 2969–2985.PubMedCrossRefGoogle Scholar
  57. Peiris, J. S. M., Porterfield, J. S., and Roehrig, J. T., 1982, Monoclonal antibodies against the flavivirus West Nile, J. Gen. Vitol. 58: 283–289.CrossRefGoogle Scholar
  58. Pelham, H. R. B., 1978, Leaky UAG termination codon in tobacco mosaic virus RNA, Nature (London) 272: 469–471.CrossRefGoogle Scholar
  59. Perlman, D., and Halvorson, H. O. 1983, A putative signal peptidase recognition site and sequence in eukaryotic and prokaryotic signal peptides, J. Mol. Biol. 167: 391–409.PubMedCrossRefGoogle Scholar
  60. Porterfield, J. S., 1980, Antigenic characteristics and classification of Togaviridae, in: The Togaviruses ( R. W. Schlesinger, ed.), pp. 13–46, Academic Press, New York.Google Scholar
  61. Reanney, D. C., 1982, The evolution of RNA viruses, Annu. Rev. Microbiol. 36: 47–73.PubMedCrossRefGoogle Scholar
  62. Rice, C. M., and Strauss, J. H., 1981a, Nucleotide sequence of the 26S mRNA of Sindbis virus and deduced sequence of the encoded virus structural proteins, Proc. Natl. Acad. Sci. U.S.A. 78: 2062–2066.PubMedCrossRefGoogle Scholar
  63. Rice, C. M., and Strauss, J. H., 1981b, Synthesis, cleavage, and sequence analysis of cDNA complementary to the 26S mRNA of Sindbis virus, J. Mol. Biol. 150: 315–340.PubMedCrossRefGoogle Scholar
  64. Rice, C. M., Lenches, E. M., Eddy, S. R., Shin, S. J., Sheets, R. L., and Strauss, J. H., 1985, Nucleotide sequence of yellow fever virus: Implications for flavivirus gene expression and evolution, Science 229: 726–733.PubMedCrossRefGoogle Scholar
  65. Rice, C. M., Dalgarno, L., Strauss, E. G., and Strauss, J. H., 1986a, cDNA cloning of flavivirus genomes for comparative analysis and expression (submitted).Google Scholar
  66. Rice, C. M., Aebersold, R., Teplow, D. B., Pata, J., Bell, J. R., Vorndam, A. V., Trent, D. W., Brandriss, M. W., Schlesinger, J. J., and Strauss, J. H., 1986b, Partial N-terminal amino acid sequences of three nonstructural proteins of two flaviviruses, submitted.Google Scholar
  67. Roehrig, J. T., Mathews, J. H., and Trent, D. W., 1983, Identification of epitopes on the E glycoprotein of St. Louis encephalitis virus using monoclonal antibodies, Virology 128: 118–126.Google Scholar
  68. Russell, G. J., Walker, P. M. B., Elton, R. A., and Subak-Sharpe, J. H., 1976, Doublet frequency analysis of fractionated vertebrate nuclear DNA, J. Mol. Biol. 108: 1–23.PubMedCrossRefGoogle Scholar
  69. Russell, P. K., Brandt, W. E., and Dalrymple, J. M., 1980, Chemical and antigenic structure of flaviviruses, in: The Togaviruses ( R. W. Schlesinger, ed.), pp. 503–529, Academic Press, New York.Google Scholar
  70. Salser, W., 1977, Globin mRNA sequences: Analysis of base-pairing and evolutionary implications, Cold Spring Harbor Symp. Quant. Biol. 42: 985–1002.CrossRefGoogle Scholar
  71. Schlesinger, J. J., Brandriss, M. W., and Monath, T. P., 1983, Monoclonal antibodies distinguish between wild and vaccine strains of yellow fever virus by neutralization, hem-agglutination inhibition, and immune precipitation of the virus envelope protein, Virology 125: 8–17.PubMedCrossRefGoogle Scholar
  72. Schlesinger, J. J., Walsh, E. E., and Brandriss, M. W., 1984, Analysis of 17D yellow fever virus envelope protein epitopes using monoclonal antibodies, J. Gen. Virol. 65: 1637–1644.PubMedCrossRefGoogle Scholar
  73. Shapiro, D., Brandt, W. E., and Russell, P. K., 1972, Change involving a viral membrane glycoprotein during morphogenesis of group B arboviruses, Virology 50: 906–911.PubMedCrossRefGoogle Scholar
  74. Shapiro, D., Kos, K. A., and Russell, P. K., 1973, Protein synthesis in Japanese encephalitis virus-infected cells, Virology 56: 95–109.PubMedCrossRefGoogle Scholar
  75. Smith, G. W., and Wright, P. J., 1985, Synthesis of proteins and glycoproteins in dengue type 2 virus-infected Vero and Aedes albopictus cells, J. Gen. Virol. 66: 559–571.PubMedCrossRefGoogle Scholar
  76. Stanway, G., Hughes, P. J., Mountford, R. C., Minor, P. D., and Almond, J. W., 1984, The complete nucleotide sequence of a common cold virus: Human rhinovirus 14, Nucleic Acids Res. 12: 7859–7875.PubMedCrossRefGoogle Scholar
  77. Stephenson, J. R., Lee, J. M., and Wilton-Smith, P. D., 1984, Antigenic variation among members of the tick-borne encephalitis complex, J. Gen. Virol. 65: 81–89.PubMedCrossRefGoogle Scholar
  78. Strauss, E. G., and Strauss, J. H., 1983, Replication strategies of the single stranded RNA viruses of eukaryotes, Curr. Top. Microbiol. Immunol. 105: 1–98.PubMedCrossRefGoogle Scholar
  79. Strauss, E. G., and Strauss, J. H., 1985, Assembly of enveloped animal viruses, in: Virus Structure and Assembly S. J. Casjens, ed.), pp. 205–234, Jones and Bartlett, Portola Valley, California.Google Scholar
  80. Strauss, E. G., Rice, C. M., and Strauss, J. H., 1983, Sequence coding for the alphavirus nonstructural proteins is interrupted by an opal termination codon, Proc. Natl. Acad. Sci. U.S.A. 80: 5271–5275.PubMedCrossRefGoogle Scholar
  81. Strauss, E. G., Rice, C. M., and Strauss, J. H., 1984, Complete nucleotide sequence of the genomic RNA of Sindbis virus, Virology 133: 92–110.PubMedCrossRefGoogle Scholar
  82. Svitkin, Y. V., Lyapustin, V. N., Lashkevich, V. A., and Agol, V. I., 1978. A comparative study on translation of flavivirus and picornavirus RNAs in vitro: Apparently different modes of protein synthesis, FEBS Lett. 96: 211–215.PubMedCrossRefGoogle Scholar
  83. Svitkin, Y. V., Ugarova, T. Y., Chernovskaya, T. V., Lyapustin, V. N., Lashkevich, V. A., and Agol, V. I., 1981, Translation of tick-borne encephalitis virus (flavivirus) genome in vitro: Synthesis of two structural polypetides, Virology 110: 26–34.PubMedCrossRefGoogle Scholar
  84. Svitkin, Y. V., Lyapustin, V. N., Lashkevich, V. A., and Agol, V. I., 1984, Differences between translation products of tick-borne encephalitis virus RNA in cell-free systems from Krebs-2 cells and rabbit reticulocytes: Involvement of membranes in the processing of nascent precursors of flavivirus structural proteins, Virology 135: 536–541.PubMedCrossRefGoogle Scholar
  85. Takio, K., Towatari, T., Katunuma, N, Teller, D. C., and Titani, K., 1983, Homology of amino acid sequences of rat liver cathepsins B and H with that of papain, Proc. Natl. Acad. Sci. U.S.A. 80: 3666–3670.PubMedCrossRefGoogle Scholar
  86. Tinoco, I., Borer, P. N., Dengler, B., Levine, M. D., Uhlenbeck, O. C., Crothers, D. M., and Gralla, J., 1973, Improved estimation of secondary structure in ribonucleic acids, Nature (London) New Biol. 246: 40–41.Google Scholar
  87. Trent, D. W., Grant, J. A., Rosen, L., and Monath, T. P., 1983, Genetic variation among dengue 2 viruses of different geographic origin, Virology 128: 271–284.PubMedCrossRefGoogle Scholar
  88. Vezza, A. C., Rosen, L., Repik, P., Dalrymple, J., and Bishop, D. H. L., 1980, Characterization of the viral RNA species of prototype dengue viruses, Am. J. Trop. Med. Hyg. 29: 643–652.PubMedGoogle Scholar
  89. Walter, P., and Blobel, G., 1982, Mechanism of protein translocation across the endoplasmic reticulum, Biochem. Soc. Symp. 47: 183–191.PubMedGoogle Scholar
  90. Welch, W. J., and Sefton, B. M., 1979, Two small virus-specific polypeptides are produced during infection with Sindbis virus, J. Virol. 29: 1186–1195.PubMedGoogle Scholar
  91. Wengler, G., and Wengler, G., 1981, Terminal sequences of the genome and replicativeform RNA of the flavivirus West Nile virus: Absence of poly(A) and possible role in RNA replication, Virology 113: 544–555.PubMedCrossRefGoogle Scholar
  92. Wengler, G., Wengler, G., and Gross, H. J., 1978, Studies on virus-specific nucleic acids synthesized in vertebrate and mosquito cells infected with flaviviruses, Virology 89: 423–437.PubMedCrossRefGoogle Scholar
  93. Wengler, G., Beato, M., and Wengler, G., 1979, In vitro translation of 42S virus-specific RNA from cells infected with the flavivirus West Nile virus, Virology 96: 516–529.Google Scholar
  94. Westaway, E. G., 1973, Proteins specified by group B togaviruses in mammalian cells during productive infections, Virology 51: 454–465.PubMedCrossRefGoogle Scholar
  95. Westaway, E. G., 1975, The proteins of Murray Valley encephalitis virus, J. Gen. Virol. 27: 283–292.CrossRefGoogle Scholar
  96. Westaway, E. G., 1977, Strategy of the flavivirus genome: Evidence for multiple internal initiation of translation of proteins specified by Kunjin virus in mammalian cells, Virology 80: 320–335.PubMedCrossRefGoogle Scholar
  97. Westaway, E. G., 1980, Replication of flaviviruses, in: The Togaviruses ( R. W. Schlesinger, ed.), pp. 531–581, Academic Press, New York.Google Scholar
  98. Westaway, E. G., and Shew, M., 1977, Proteins and glycoproteins specified by the flavivirus Kunjin, Virology 80: 309–319.PubMedCrossRefGoogle Scholar
  99. Westaway, E. G., McKimm, J. L., and McLeod, L. G., 1977, Heterogeneity among flavivirus proteins separated in slab gels, Arch. Virol. 53: 305–312.PubMedCrossRefGoogle Scholar
  100. Westaway, E. G., Schlesinger, R. W., Dalrymple, J. M., and Trent, D. W., 1980, Nomenclature of flavivirus-specified proteins, Intervirology 14: 114–117.PubMedCrossRefGoogle Scholar
  101. Westaway, E. G., Speight, G., and Endo, L., 1984, Gene order of translation of the flavivirus Kunjin: Further evidence of internal initiation in vivo, Virus Res. 1: 333–350.PubMedCrossRefGoogle Scholar
  102. Wright, P. J., 1982, Envelope protein of the flavivirus Kunjin is apparently not glycosylated, J. Gen. Virol. 59: 29–38.PubMedCrossRefGoogle Scholar
  103. Wright, P. J., and Warr, H. M., 1985, Peptide mapping of envelope-related glycoproteins specified by the flaviviruses Kunjin and West Nile, J. Gen. Virol. 66: 597–601.PubMedCrossRefGoogle Scholar
  104. Wright, P. J., Bowden, D. S., and Westaway, E. G., 1977, Unique peptide maps of the three largest proteins specified by the flavivirus Kunjin, J. Virol. 24: 651–661.PubMedGoogle Scholar
  105. Wright, P. J., Warr, H. M., and Westaway, E. G., 1981, Synthesis of glycoproteins in cells infected by the flavivirus Kunjin, Virology 109: 418–427.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Charles M. Rice
    • 1
  • Ellen G. Strauss
    • 1
  • James H. Strauss
    • 1
  1. 1.Division of BiologyCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations