Yields of Tritium During Fission of Nuclides of Interest in Nuclear Power Reactors

  • Donald L. Horrocks
Part of the Developments in Applied Spectroscopy book series (DAIS, volume 9)


A very important problem associated with the development of commercial power reactors is the effect of their operation on the environment. An important product of the fission process which could be a serious source of environmental contamination is tritium.

In this paper a discussion will be given on the measurpment of the yield of tritium from fission of several nuclides of interest as fuels in nuclear power reactors. Some problems of measurement of the tritium yields are presented.


Power Reactor Alpha Particle Fission Fragment Fission Process Fission Yield 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. L. Albenesius, Phys. Rev. Lett. 3, 274 (1959).CrossRefGoogle Scholar
  2. 2.
    Z. Fraenkel, Phys. Rev. 156, 1283 (1967).CrossRefGoogle Scholar
  3. 3.
    Y. Boneh, Z. Fraenkel and I. Nebenzahl, Phys. Rev. 156, 1305 (1967).CrossRefGoogle Scholar
  4. 4.
    D. L. Hill and J. A. Wheeler, Phys. Rev. 89, 1102 (1953).CrossRefGoogle Scholar
  5. 5.
    See a review by N. Feather, in: “Second IAEA Symposium on Physics and Chemistry of Fission” (International Atomic Energy Agency, Vienna, 1969), pp. 83–106.Google Scholar
  6. 6.
    S. W. Cosper, J. Cerny and R. C. Gatti, Phys. Rev. 154, 1193 (1967).CrossRefGoogle Scholar
  7. 7.
    E. N. Sloth, D. L. Horrocks, E. J. Boyce and M. H. Studier, J. Inorg. Nucl. Chem. 24, 337 (1962).CrossRefGoogle Scholar
  8. 8.
    B. D. L. Horrocks and E. B. White, Nucl. Phys. (in press).Google Scholar
  9. 9.
    E. L. Albenesius and R. J. Ondrejcin, Nucleonics 18 (9), 100 (1960).Google Scholar
  10. 10.
    D. L. Horrocks, Transactions, 1965 Annual Meeting, American Nuclear Society 8, 12 (1965).Google Scholar
  11. 11.
    W. L. Imhog, E. J. Vaughn, L. F. Chase, Jr., H. A. Grench and M. Walt, Nucl. Phys. 59, 81 (1964).CrossRefGoogle Scholar
  12. 12.
    M. H. Studier, C. Postmus, Jr., J. Mech, R. R. Walters and E. N. Sloth, J. Inorg. Nucl. Chem. 24, 755 (1962).CrossRefGoogle Scholar
  13. 13.
    D. L. Horrocksand M. H. Studier, Anal. Chem. 33, 615 (1961).CrossRefGoogle Scholar
  14. 14.
    D. L. Horrocks, Nature 202, 78 (1964).CrossRefGoogle Scholar
  15. 15.
    R. A. Nobles, Phys. Rev. 126, 1508 (1962).CrossRefGoogle Scholar
  16. 16.
    M. Cambiaghi, F. Fossati and T. Pinelli, Nuovo Cim. 59B, 236 (1969).CrossRefGoogle Scholar
  17. 17.
    F. Cavallari, M. Cambiaghi, F. Fossati and T. Pinelli, in: “Second IAEA Symposium on Physics and Chemistry of Fission” (International Atomic Energy Agency, Vienna, 1969), pp. 891–893.Google Scholar
  18. T. Krogulski, J. Chwaszczewska, M. Dakowski, E. Piasecki, M. Sowinski and J. Tys, Nucl. Phys. A128, 219 (1969).Google Scholar
  19. 19.
    D. L. Horrocks, Phys. Rev. 134, B1219 (1964).CrossRefGoogle Scholar
  20. 20.
    J. C. Watson, Phys. Rev. 121, 230 (1961).CrossRefGoogle Scholar

Copyright information

© Chicago Section of the Society for Applied Spectroscopy 1971

Authors and Affiliations

  • Donald L. Horrocks
    • 1
  1. 1.Chemistry DivisionArgonne National LaboratoryArgonneUSA

Personalised recommendations