Comparative Study of Chemical Interferences of Calcium in Atomic Absorption and Flame Emission Spectrometry

  • Jae Y. Hwang
  • Keiichiro Fuwa
Part of the Developments in Applied Spectroscopy book series (DAIS, volume 9)


Comparative observations on the degrees of the chemical interferences of calcium are presented for atomic absorption and flame emission spectrometry. In order to compare both methods on an equal footing the calcium resonance line at 422.7 nm was used under the identical flame conditions. Chemical interferences of calcium from sodium, iron, aluminum, sulfate, phosphate, nitrate, chloride, and silicate were interpreted in terms of burner height and flame condition. A similar study was made on a second resonance line at 239.9 nm and on the molecular band heads near 554.0 and 628.0 nm, respectively.

The results not only refute the claim that flame emission spectrometry is more susceptible to the chemical interferences than atomic absorption spectrometry, but also show that the depression effects of the interferents on the calcium lines studied are similar to the effects on the calcium molecular band heads. The data also show that the chemical interferences decrease as the flames become leaner and as the burner height increases. Behaviour of a releasing and protective agent is discussed in terms of the burner height and stoichiometry of the flames.


Resonance Line Flame Temperature EDTA Solution Residenee Time Turbulent Flame 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Fukushima, Mikrochimica Acta, 4, 596 (1959)Google Scholar
  2. 2.
    C. Th. J. Alkemade and M. H. Voorhuis, Z. Anal. Chim., 163, 91 (1958).CrossRefGoogle Scholar
  3. 3.
    R. Herrmann, C. Th. J. Alkemade, Chemical Analysis for Flame Photometry, 2nd Edn., translated by P. T. Gilbert, Interscience, New York, 1963.Google Scholar
  4. 4.
    V. A. Fassel and D. A. Becker, Anal. Chem. 41, 1552 (1969).CrossRefGoogle Scholar
  5. 5.
    T. V. Ramakrishna, P. W. West and J. W. Robinson, Anal. Chim. Acta, 40, 347 (1966).CrossRefGoogle Scholar
  6. 6.
    P. B. Adams and W. O. Passmore, Anal. Chem., 38, 631 (1966).Google Scholar
  7. 7.
    C. Rocchicioli and A. Townshend, Anal. Chim. Acta, 41, 93 (1968).CrossRefGoogle Scholar
  8. 8.
    R. Smith and J. D. Winefordner, Spectroscopy Letters, 1, 157 (1968).CrossRefGoogle Scholar
  9. 9.
    J. Hwang and L. M. Sandonato, Anal. Chim. Acta, 48, 188 (1969).CrossRefGoogle Scholar
  10. 10.
    J. Hwang and F. J. Feldman, 20th Mid-America: Symposium on Spectroscopy, Chicago, Ill. May (1969).Google Scholar
  11. 11.
    J. Hwang, K. Fuwa and F. J. Feldman, 21st Mid-America Symposium on Spectroscopy, Chicago, Ill., June (1970).Google Scholar
  12. 12.
    T. C. Rains, Flame Emission and Atomic Absorption Spectrometry, J. A. Dean and T. C. Rains, Eds., Dekker, New York, 1969, p. 349.Google Scholar
  13. 13.
    I. Rubeska, Flame Emission and Atomic Absorption Spectrometry, J. A. Dean and T. C. Rains, Eds., Dekker, New York, 1969, p. 317.Google Scholar
  14. 14.
    T. S. West, Analyst, 91, 69 (1966).CrossRefGoogle Scholar
  15. 15.
    T. S. West, Trace Characterization: Chemical and Physical, National Bureau of Standards, Monograph 100, W.W. Meinke and B.F. Scribner, Eds., U.S.Government Printing Office, Washington D.C., 1967, p. 281.Google Scholar
  16. 16.
    L. de Galan and J. Winefordner, Anal.Chem.,38, 1412 (1966).CrossRefGoogle Scholar
  17. 17.
    J. D. Winefordner, C. T. Mansfield and T. J. Vickers, Anal. Chem., 35, 1607 (1963).CrossRefGoogle Scholar
  18. 18.
    L. de Galan and J. D. Winefordner, J. Quant. Spectry. Radiat. Transfer, 7, 251 (1967).CrossRefGoogle Scholar
  19. 19.
    E. Hinnov and J. Kohn, J.Opt.Soc.Am.,47,156 (1957).CrossRefGoogle Scholar
  20. 20.
    S. R. Koirtyohann and E. E. Pickett, XIII Col. Spectrosc. Int., Ottawa, Canada (1967).Google Scholar
  21. 21.
    W. F. Ulrich and J. Ramirez-Munoz, Atomic Absorption Spectroscopy, STP 443, ASTM, 1969, p. 90CrossRefGoogle Scholar
  22. 22.
    R. E. Popham and W. G. Schrenk, Developments in Applied Spectroscopy, E. L. Grove and A. J. Perkins, Eds., Plenum Press, New York, vol. 7A, 1969, p. 189.Google Scholar
  23. 23.
    J. Stupar and J. B. Dawson, Applied Optics, 7, 1351 (1968)CrossRefGoogle Scholar
  24. 24.
    R. Smith, C. M. Stafford and J. D. Winefordner, Anal. Chim. Acta, 42, 523 (1968).CrossRefGoogle Scholar
  25. 25.
    E. Pungor and I. Konkoly-Thege, Mikrochim Acta, 712 (1959).Google Scholar
  26. 26.
    C. A. Baker and F. W. J. Garton, UKAEA, AERE, R 3490 (1961).Google Scholar
  27. 27.
    J. H. Gibson, W. E. L. Grossman, and W. D. Cooke, Anal. Chem., 35, 266 (1966).CrossRefGoogle Scholar
  28. 28.
    J. Debras-Guedon, Compt. Rend., 257, 3155 (1963).Google Scholar
  29. 29.
    J. Yofe, R. Avni and M. Stiller, Anal. Chim. Acta, 28, 331 (1963).CrossRefGoogle Scholar
  30. 30.
    G. M. Hieftje and H. V. Malmstadt, Anal. Chem., 40, 1860 (1968).CrossRefGoogle Scholar
  31. 31.
    G. M. Hieftje and H. V. Malmstadt, Anal. Chem., 41, 1735 (1969).CrossRefGoogle Scholar

Copyright information

© Chicago Section of the Society for Applied Spectroscopy 1971

Authors and Affiliations

  • Jae Y. Hwang
    • 1
  • Keiichiro Fuwa
    • 2
  1. 1.Applications LaboratoryInstrumentation Laboratory Inc.LexingtonUSA
  2. 2.Department of Agricultural ChemistryUniversity of TokyoBunkyo-ku, TokyoJapan

Personalised recommendations