Skip to main content

Band Offsets at Semiconductor Heterojunctions: Bulk or Interface Properties?

  • Chapter
Band Structure Engineering in Semiconductor Microstructures

Part of the book series: NATO ASI Series ((NSSB,volume 189))

  • 245 Accesses

Abstract

The problem of whether band offsets at semiconductor interfaces are determined by bulk properties of the constituents or substantially affected by interface phenomena is critically readdressed. In particular, the conditions under which band offsets do not depend on the interface orientation are examined. State-of-the-art ab-initio pseudopotential calculations are performed for (GaAs)3(AlAs)3 grown in the (001), (110), and (111) directions. Our results are analysed through a novel definition of the interface charge distribution which does not snake any use of ideal reference interfaces: the dipole corresponding to such a distribution directly yields the potential drop across the interface. Our calculations give for the (001), (110), and (111) interfaces a band offset of 0.49, 0.51, and 0.49 eV respectively, thus indicating that orientation independence holds in this case. However, in the case of the (111) orientation, two inequivalent interfaces exist whose offsets slightly differ (0.07 eV); associated with this difference we also found a net interfacial charge accumulation at the two inequivalent interfaces (±2.8 ×10−4 electrons per unit surface cell). Our results are finally interpreted through a new model based on crystal symmetry and whose only ingredients are the bulk charge densities of the the two constituents. The model — though not reproducing the fine details of the (111) superlattice — is in excellent agreement with our first-principles results and with available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.S. Bauer and G. Margaritondo, Phys. Today, 40, 27 (1987) and ref. quoted therein. See also the issues: J. Vac Sci. and Technol. B 4 No. 4 (1986), and B 5, No. 4 (1987).

    Google Scholar 

  2. For a review of models of semiconductor heterjunction interfaces, see R.S. Bauer and G. Margaritondo, Ref. 1.

    Google Scholar 

  3. C. Van de Walle and R.M. Martin, in Computer-Based Microscopic Description of the Structure and Properties of Materials, edited by J. Broughton, W. Krakow and S.T. Pantelides, (Materials Research Society, Pittsburg, 1986), p. 21; J. Vac. Sci. Technol. B 4, 1056; Phys. Rev. B 35, 8154 (1987).

    Google Scholar 

  4. M. Cardona and N.E. Christensen, Phys. Rev. B 35, 6182 (1987); N.E. Christensen, preprint

    Google Scholar 

  5. D.M. Bylander and L. Kleinman, Phys. Rev. B 34, 5280 (1986); ibid. 36, 3229 (1987); Phys. Rev. Lett. 59, 2091 (1987).

    Google Scholar 

  6. S. Massidda, B.I. Min and A.J. Freeman, Phys. Rev. B 35, 9871 (1987).

    Article  ADS  Google Scholar 

  7. S. Baroni, P. Giannozzi, and A. Testa, Phys. Rev. Lett. 58, 1861 (1987).

    Article  ADS  Google Scholar 

  8. G.B. Bachelet, D.R. Hamann and M. Schlüter, Phys. Rev. B 26, 4199 (1982).

    Article  ADS  Google Scholar 

  9. D.M. Ceperley and B.J. Alder, Phys. Rev. Lett. 45, 566 (1980)

    Article  ADS  Google Scholar 

  10. J. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).

    Article  ADS  Google Scholar 

  11. H.J. Monkhorst and J.P. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  MathSciNet  ADS  Google Scholar 

  12. R.W. Godby, M. Schlüter and L.J. Sham, Phys. Rev. B 35, 4170 (1987); ibid. 36, 6497 (1987).

    Google Scholar 

  13. S.B. Zhang, D. Tomanek, and S.G. Louie, preprint

    Google Scholar 

  14. L. Kleinman, Phys. Rev. B 24, 7412 (1981).

    Article  Google Scholar 

  15. A. Munoz, J. Sânchez-Dehesa and F. Flores, Phys. Rev. B 35, 6468 (1987).

    Article  ADS  Google Scholar 

  16. M. Peressi, A. Baldereschi, S. Baroni, and R. Resta, to be published.

    Google Scholar 

  17. C.K. Shih and W.E. Spicer, Phys. Rev. Lett. 58, 2594 (1987).

    Article  ADS  Google Scholar 

  18. S.P. Kowalczyk, J.T. Cheung, E.A. Kraut, and R.W. Grant, Phys. Rev. Lett. 56, 1605, (1986)

    Article  ADS  Google Scholar 

  19. T.M. Duc, H. Hsu, and J.P. Fannie, Phys. Rev. Lett. 58 1127, (1987).

    Article  ADS  Google Scholar 

  20. S.H. Wei and A. Zunger, Phys. Rev. Lett. 59, 144 (1987).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Baroni, S., Resta, R., Baldereschi, A. (1989). Band Offsets at Semiconductor Heterojunctions: Bulk or Interface Properties?. In: Abram, R.A., Jaros, M. (eds) Band Structure Engineering in Semiconductor Microstructures. NATO ASI Series, vol 189. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0770-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0770-0_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0772-4

  • Online ISBN: 978-1-4757-0770-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics