AB-Initio Calculated Optical Properties of [001] (GaAs)n-(AlAs)n Superlattices

  • R. Eppenga
  • M. F. H. Schuurmans
Part of the NATO ASI Series book series (NSSB, volume 189)


Recently, the gap between experimentally and theoretically accessible [001] (GaAs)n-(AlAs)n superlattices has been bridged. Following the pioneering work of Ishibashy et al., 1 several 2–5 (GaAs)n-(AlAs)n superlattices of high quality have been grown and characterized down to n = 1. Initiated by the LMTO calculation of Christensen et al. 6 for the (GaAs)1-(A1As)1 superlattice, ab-initio bandstructure methods have been applied to these superlattices up to n = 4. 7–11


Conduction Band Oscillator Strength Band State Indirect Transition Radiative Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Ishibashi, Y. Mori, M. Itabashi and N. Watanabe, J. Appl. Phys. 58, 2691 (1985)ADSCrossRefGoogle Scholar
  2. 2.
    T. Isu, De-Sheng Jiang and K. Ploog, Appl. Phys A43, 75 (1987)CrossRefGoogle Scholar
  3. 3.
    K.J. Moore, G. Duggan, P. Dawson and C.T.B. Foxon, to be published.Google Scholar
  4. 4.
    E. Finkman, M.D. Sturge and M.C. Tamargo, Appl. Phys. Lett. 49, 1299 (1986);ADSCrossRefGoogle Scholar
  5. 5.
    N. Kobayashi and Y. Horikoshi, Appl. Phys. Lett. 50, 909 (1987)ADSCrossRefGoogle Scholar
  6. 6.
    N.E. Christensen, E. Molinari and G.B Bachelet, Solid State Comm. 56, 125 (1985)ADSCrossRefGoogle Scholar
  7. 7.
    T. Nakayama and H. Kamimura, J. Phys. Soc. Japan 54, 4726 (1985)ADSCrossRefGoogle Scholar
  8. 8.
    D.M. Bylander and L. Kleinman, Phys. Rev. B 34, 5280 (1986)ADSCrossRefGoogle Scholar
  9. 9.
    T.G. Gilbert and S.J. Gurman, Superl. and Microstr. 3, 17 (1987)ADSCrossRefGoogle Scholar
  10. 10.
    J.S. Nelson, C.Y. Fong and I.P. Batra, Appl. Phys. Lett. 50, 1595 (1987)ADSCrossRefGoogle Scholar
  11. 11.
    S. Ciraci and I.P. Batra, Phys. Rev. B36, 1225 (1987); I.P. Batra, S. Ciraci and J.S. Nelson, J. Vac. Sci. Technol. B4, 1300 (1987)Google Scholar
  12. 12.
    D.M. Bylander and L. Kleinman, Phys. Rev. B 36, 3229 (1987); D.M. Bylander and L. Kleinman, Phys. Rev. Lett. 59, 2091 (1987)Google Scholar
  13. 13.
    D.M. Wood, S.H. Wei and A. Zunger, Phys. Rev. Lett. 58, 1123 (1987)ADSCrossRefGoogle Scholar
  14. 14.
    A.R. Williams, J. Kubler, C.D. Gelatt, Phys.Rev. B19, 6094 (1979)ADSCrossRefGoogle Scholar
  15. 15.
    see e.g. G. Bastard and J.A. Brum, IEEE Journ. of Quant. Elec. QE-22, 1625 (1986) and references therein.Google Scholar
  16. 16.
    P. Hohenberg and W. Kohn, Phys. Rev. 136B, 864 (1964); W. Kohn and L.J. Sham, Phys. Rev. 140A, 1133 (1965)Google Scholar
  17. 17.
    T. Jarlborg and A.J. Freeman, Phys. Lett. 74A, 349 (1979)CrossRefGoogle Scholar
  18. 18.
    H.W.A.M. Rompa, R. Eppenga and M.F.H. Schuurmans, Physica 145B, 5 (1987)Google Scholar
  19. 19.
    G.W. Godby, M. Schluter and L.J. Sham, Phys. Rev. B35, 4170 (1987); These authors have shown that the experimental conduction bands of GaAs and AlAs can, to within 100 meV, be obtained from their ab-initio density functional calculations using a rigid shift of 0.8 eV for GaAs and 0.9 eV for AlAs. Using a similar approach we find the calculated relative energy positions in the conduction bands of GaAs and AlAs to be accurate on the level of 30 meV.Google Scholar
  20. 20.
    Our calculated results for the ground state properties of these superlattices are in accordance with the results from other ab-initio calculations. We define the GaAs/AlAs interface heat of formation as AH0 = E((GaAs)n (A1As)0)/n — (E(GaAs) + E(A1As))/2; we have calculated the total energies E(GaAs) and E(AlAs) under the same conditions as the SL calculation, i.e. using the same unit cell, the same number of k-points in the BZ, etc. We find meV (cf. Bylander and Kleinman (15 meV) using relativistic pseudopotentials 12 and Wood et al. (25 meV) using both semirelativistic pseudo-potentials and the LAPW method). 13 We find AH2a19 meV. By shifting the bulk GaAs and AlAs potential rigidly to fit the potential of the corresponding monolayers of the GaAs/AlAs SL optimally, we find a value of 0.6 meV for the valence band offset F(HH)G’m — T(HH)A’As in [001] GaAs-AlAs superlattices (cf. 446 meV in Ref. 12).Google Scholar
  21. 21.
    Note that we need not consider the virtual process involving the valence band states since the corresponding energy denominator is much larger.Google Scholar
  22. 22.
    A.S. Barker, J.L. Merz and A.C. Gossard, Phys. Rev. B17, 3181 (1978); C. Colvard, R. Merlin, M.V. Klein and A.C. Gossard, Phys. Rev. Lett. 45, 298 (1980); C. Colvard, R. Merlin, M.V. Klein and A.C. Gossard, J. de Physique C6, 631 (1981)Google Scholar
  23. 23.
    O.J. Glembocky and F.H. Pollak, Phys. Rev. Lett. 48, 413 (1982); O.J. Glembocky and F.H. Pollak, Phys. Rev. B25, 1193 (1982);Google Scholar
  24. 24.
    J. Ihm, Appl. Phys. Lett. 50, 1068 (1987)ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • R. Eppenga
    • 1
  • M. F. H. Schuurmans
    • 1
  1. 1.Philips Research LaboratoriesEindhovenThe Netherlands

Personalised recommendations