Optical Properties of Semiconductor Superlattices

  • Yia-Chung Chang
  • Hanyou Chu
  • G. D. Sanders
Part of the NATO ASI Series book series (NSSB, volume 189)

Abstract

Semiconductor quantum wells and superlattices1 have received growing interest in recent years. Optical measurements including photoabsorption, photoluminescence, and Raman scattering are widely adopted for probing the electronic states of these heterostructures. Using a simple quantum mechanical model which contains essentially a particle in a one-dimensional square-well potential (particle-in-a-box model)2, one can obtain a fairly accurate description of the energy levels in a GaAs-AlxGa1−xAs quantum well with well size between 50 Å and 300 Å. This model predicts a selection rule for the inter-band optical transitions which requires the difference in principal quantum numbers of the initial hole state and the final electron state in a quantum well to be zero, i.e. Δn = 0. Indeed, most experimental data indicate that Δn = 0 transitions are at least an order of magnitude stronger than the other transitions which violate this selection rule.

Keywords

Oscillator Strength Excitonic State Envelope Function Excitonic Transition Barrier Width 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. 1.
    L. Esaki, R. Tsu, IBM J. Res. Develop. 14, 61 (1970).CrossRefGoogle Scholar
  2. 2.
    A. C. Gossard, P. M. Petroff, W. Wiegman, R. Dingle, and A. Savage, Appl. Phys. Lett. 29, 323 (1976);ADSCrossRefGoogle Scholar
  3. E. E. Mendez, L. L. Chang, C. A. Chang, L. F. Alexander, and L. Esaki, Surf. Sci. 142, 215 (1984).ADSCrossRefGoogle Scholar
  4. 3.
    Y.-C. Chang, J. N. Schulman, Appl. Phys. Lett 43, 536 (1983);ADSCrossRefGoogle Scholar
  5. Y.-C. Chang, J. N. Schulman, Phys. Rev. B. 31, 2069 (1985).ADSCrossRefGoogle Scholar
  6. 4.
    G. D. Sanders, Y. C. Chang, Phys. Rev. B 31, 6892 (1985);ADSCrossRefGoogle Scholar
  7. G. D. Sanders, Y. C. Chang, Phys. Rev. B 32, 4282 (1985);ADSCrossRefGoogle Scholar
  8. G. D. Sanders, Y. C. Chang, Phys. Rev. B 35, 1300 (1987).ADSCrossRefGoogle Scholar
  9. 5.
    J. C. Phillips, Phys. Rev. 136A, 1705 (1964).ADSCrossRefGoogle Scholar
  10. 6.
    B. Velicky, J. Sak, Phys. Status Solidi 16, 147 (1966).CrossRefGoogle Scholar
  11. 7.
    H. Kamimura, K. Nakao, J. Phys. Soc. of Japan, V.24, No. 6, 1313 (1968).ADSCrossRefGoogle Scholar
  12. 8.
    E. O. Kane, Phys. Rev. 180, 852 (1969).ADSCrossRefGoogle Scholar
  13. 9.
    J. E. Rowe, F. H. Pollak, M. Cardona, Phys. Rev. Lett. 22, 933 (1969).ADSCrossRefGoogle Scholar
  14. 10.
    S. Antoci, E. Reguzzoni, G. Samoggia, Phys. Rev. Lett. 24, 1304 (1970).ADSCrossRefGoogle Scholar
  15. 11.
    H. Chu, Y. C. Chang, Phys. Rev. B 36, 2946 (1987).ADSCrossRefGoogle Scholar
  16. 12.
    J. N. Schulman and Y. C. Chang, Phys. Rev. B 24, 4445 (1981).ADSCrossRefGoogle Scholar
  17. 13.
    C. Mailhiot, D. L. Smith, and T. C. McGill, J. Vac. Sci. Technol. B2 (3), 371 (1984).CrossRefGoogle Scholar
  18. 14.
    A. Fasolino and M. Altarelli, in Two-Dimensional Systems, Heterostructures, and Superlattices, edited by G. Bauer, F. Kucher, and H. Heinrich (Springer-Verlag, New York, 1984 );Google Scholar
  19. M. Altarelli, Phys. Rev. B 32, 5138 (1985).ADSCrossRefGoogle Scholar
  20. 15.
    A. Broido and L. J. Sham, Phys. Rev. B 34, 3917 (1986).ADSCrossRefGoogle Scholar
  21. 16.
    Y. C. Chang, Phys. Rev. B (in press).Google Scholar
  22. 17.
    E. O. Kane, J. Phys. Chem. Solids, 1, 82 (1956).ADSCrossRefGoogle Scholar
  23. 18.
    J. M. Luttinger, W. Kohn, Phys. Rev. 97, 869 (1956).ADSCrossRefGoogle Scholar
  24. 19.
    R. L. Greene, K. K. Bajaj, Solid State Commun. 45, 831 (1983).ADSCrossRefGoogle Scholar
  25. 20.
    See for example, F. Bassani and C. P. Parrasvacini, Electronic States and Optical Properties in Solids ( Pergammon, New York, 1975 ).Google Scholar
  26. 21.
    R. C. Miller, A. C. Gosard, G. D. Sanders, Y. C. Chang, J. N. Schulman, Phys. Rev. B 32, 8452 (1985).ADSCrossRefGoogle Scholar
  27. 22.
    B. Zhu and K. Huang, Phys. Rev. B 36, 8102 (1987).ADSCrossRefGoogle Scholar
  28. 23.
    B. Zhu, Phys. Rev. B 37, 4689 (1988).ADSCrossRefGoogle Scholar
  29. 24.
    H. Chu and Y. C. Chang (unpublished).Google Scholar
  30. 25.
    G. Grosso and G. Pastori Parravicini, in Memory Function approaches to Stochastic Problems in Condensed Matter, Advances in Chemical Physics, V. 62.Google Scholar
  31. 26.
    J. J. Song, private communications.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Yia-Chung Chang
    • 1
  • Hanyou Chu
    • 1
  • G. D. Sanders
    • 2
  1. 1.Department of PhysicsUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Universal Energy SystemsDaytonUSA

Personalised recommendations