Electron Beam Source Molecular Beam Epitaxy of AlxGal−xAs Graded Band Gap Device Structures
Abstract
A new method has been developed for the growth of graded band-gap AlxGal−xAs alloys by molecular beam epitaxy which is based upon electron. beam evaporation of the Group III elements. The metal evaporation rates are measured real-time and feedback controlled using beam flux sensors. The system is computer controlled which allows precise programming of the Ga and Al evaporation rates. The large dynamic response of the metal sources enables for the first time the synthesis of variable band-gap Al Gal−xAs with arbitrary composition profiles. This new technique has been demonstrated in the growth of unipolar hot electron transistors, graded base bipolar transistors, and Mshaped barrier superlattices.
Keywords
Molecular Beam Epitaxy Heterojunction Bipolar Transistor Feedback Control Loop Flux Sensor Molecular Beam Epitaxy SystemPreview
Unable to display preview. Download preview PDF.
References
- [1]F. Capasso, Ann. Rev. Mater. Sci., 16, 263–91 (1986).Google Scholar
- [2]J. P. Harbison, L. D. Peterson, J. Leskoff, Proc. Fourth Int. Conf. MBE, U. of York, September 1986 (to be pub. J. Cryst. Growth).Google Scholar
- [3]N. J. Sauer, T. Y. Chang, A. H. Dayem, E. H. Westerwick, J. Vac. Sci. Tech. B, 5, 718 (1987).CrossRefGoogle Scholar
- [4]K. Alavi, A. Y. Cho, F. Capasso, and J. Allam, J. Vac. Sci. Tech. B, 5, 802 (1987).Google Scholar
- [5]J. C. Bean, Proc. Fourth Int. Conf. MBE, U. of York, September 1986 (to be pub. J. Cryst. Growth).Google Scholar
- [6]M. B. Panish, H. Temkin, and S. Sumski, J. Vac. Sci. Tech. B, 3, 657 (1985).Google Scholar
- [7]S. Shimizu, O. Tsukakoshi, S. Komiya, and Y. Makita, Jap. J. Appl. Phys., 24, 1130–40 (1986).ADSCrossRefGoogle Scholar
- [8]R. J. Malik, J. Vac. Sci. Tech. B, 5, 722 (1987).Google Scholar
- [9]Inficon Leybold-Ileraeus Co., Syracuse, NY 13057.Google Scholar
- [10]J. 11. Weave, B. A. Joyce, P. J. Dobson, and N. Norton, Appl. Phys. A, 31, 1 (1983).Google Scholar
- [11]R. J. Malik and A. F. J. Levi, Appl. Phys. Lett., 52 (1988).Google Scholar
- [12]J. R. Hayes and A. F. J. Levi, IEEE J. Quantum Electron., QE-22, 1744 (1986).Google Scholar
- [13]M. Heiblum, M. I. Nathan, D. C. Thomas, and C. M. Knoedler, Phys. Rev. Lett., 55, 2200 (1985).ADSCrossRefGoogle Scholar
- [14]M. Kawabe, M. Kondo, N. Matsuura, and K. Yamamoto, Jpn. J. Appl. Phys., 22, L64 (1983).ADSCrossRefGoogle Scholar
- [15]B. F. Levine, C. G. Bethea, W. T. Tsang, F. Capasso, K. K. Thornber, R. C. Fulton, and D. A. Kleinman, Appl. Phys. Lett., 42, 769 (1983).ADSCrossRefGoogle Scholar
- [16]R. J. Malik, F. Capasso, R. A. Stall, R. A. Kiehl, R. W. Ryan, R. Wunder, and C. G. Bethea, Appl. Phys. Lett., 46, 600 (1985).ADSCrossRefGoogle Scholar
- [17]B. F. Levine, K. K. Choi, C. G. Bethea, J. Walker, and R. J. Malik, Appl. Phys. Lett., 50, 1092 (1987).ADSCrossRefGoogle Scholar
- [18]K. K. Choi, B. F. Levine, C. G. Bethea, J. Walker, and R. J. Malik, Appl. Phys. Lett., 50, 1814 (1987).ADSCrossRefGoogle Scholar