Observation of Ballistic Holes

  • M. Heiblum
  • K. Seo
  • H. P. Meier
  • T. W. Hickmott
Part of the NATO ASI Series book series (NSSB, volume 189)


We report the first direct observation of ballistic hole transport in semiconductors, via energy spectroscopy experiments. Light holes are preselected and injected via tunnelling into 31 nm thick p+ GaAs layers. About 10% of the injected holes have been found to traverse ballistically maintaining distributions ≈ 35 meV wide, with a mean free path of about 14 nm. Resonances in the injection currents, resulting from quantum interference effects of the ballistic holes, are used to support the light nature of the ballistic holes.


Heavy Hole GaAs Layer Light Hole Ballistic Transport Hole Band 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. J. von Gutfeld and A. H. Nethercot Jr., Phys. Rev. Lett. 18, 855 (1987).CrossRefGoogle Scholar
  2. 2.
    L. F. Eastman, R. Stall, D. Woodard, N. Dandekar, C. E. C. Wood, M. Shur, and K. Board, Electron. Lett. 16, 525 (1980).CrossRefGoogle Scholar
  3. 3.
    R. Trzcinski, E. Gmelin and H. J. Queisser, Phys. Rev. B 35, 6373 (1987).ADSCrossRefGoogle Scholar
  4. 4.
    M. Heiblum, M. I. Nathan, D. C. Thomas and C. M. Knoedler, Phys. Rev. Lett. 55, 2200 (1985);ADSCrossRefGoogle Scholar
  5. M. Heiblum, I. M. Anderson and C. M. Knoedler, Appl. Phys. Lett. 49, 207 (1986).ADSCrossRefGoogle Scholar
  6. 5.
    J. C. Blakemore, J. Appl. Phys. 53, R123 (1982).ADSCrossRefGoogle Scholar
  7. 6.
    M. Heiblum, M. V. Fischetti, W. P. Dumke, D. J. Frank, I. M. Anderson, C. M. Knoedler and L. Osterling, Phys. Rev. Lett 58, 816 (1987).ADSCrossRefGoogle Scholar
  8. 7.
    T. W. Hickmott, P. M. Solomon, R. Fischer and H. Morkoc, J. Appl. Phys. 57, 2844 (1985).ADSCrossRefGoogle Scholar
  9. 8.
    D. L. Miller and P. M. Asbeck, J. Appl. Phys. 57, 1816 (1985).ADSCrossRefGoogle Scholar
  10. 9.
    We may assume that some ballistic holes, few as they may be, always exist in the structure. We later prove their existence and find their number from spectroscopy measurements.Google Scholar
  11. 10.
    J. Batey and S. L. Wright, J. Appl. Phys. 59, 200 (1986). The valence band discontinuity ΔEV = 5.5x, where x is the AlAs mole percent. For our AlGaAs colléctor barrier, x=31% and ΔEv = 171 meV.Google Scholar
  12. 11.
    Capacitance measurements done on separate p+-intrinsic A1GaAs-p structures show a voltage shift in the flat band condition consistent with positive charges in the barrier in the low 1016 cm-3 range.Google Scholar
  13. 12.
    Similar low energy electron distributions had been reported by A. F. J. Levi, J. R. Hayes, P. M. Platzman and W. Wiegmann, Phys. Rev. Lett. 55, 2071 (1985).ADSCrossRefGoogle Scholar
  14. 13.
    M. Heiblum, Solid St. Electron. 24, 343 (1981).Google Scholar
  15. 14.
    For 31 nm base thickness, light and heavy band mixing at k=0 is insignificant. See for example S. Brand and D. T. Hughes, Semicond. Sci. Technol 2, 607 (1987).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • M. Heiblum
    • 1
  • K. Seo
    • 1
  • H. P. Meier
    • 2
  • T. W. Hickmott
    • 1
  1. 1.IBM Research DivisionT. J. Watson Research CenterYorktown HeightsUSA
  2. 2.IBM Research DivisionZurich Research LaboratoryRüschlikonSwitzerland

Personalised recommendations