AB-Initio Molecular Dynamics Studies of Microclusters

  • Wanda Andreoni
  • Giorgio Pastore
  • Roberto Car
  • Michele Parrinello
  • Paolo Giannozzi
Part of the NATO ASI Series book series (NSSB, volume 189)


The study of the structural and electronic properties of microclusters is a field of growing interest. Ab-initio molecular dynamics has provided a new and important tool for the theoretical approach to these questions. Here we present some very recent results on small semiconductor aggregates with special reference to calculations of equilibrium shapes and temperature effects. Results of simulations on alkali-metal microclusters are briefly mentioned.


Local Density Approximation Configuration Interaction Ultraviolet Photoelectron Spectroscopy Potential Energy Hypersurface Simulated Annealing Strategy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. E. Smalley, Supersonic cluster beams: an alternative approach to surface science, in “Comparison of Ab Initio Quantum Chemistry with Experiment for Small Molecules: The State of the Art,” R. J. Bartlett, ed., D. Reidel, Dordrecht, Holland (1985), p. 53, and references therein.Google Scholar
  2. 2.
    See also (a) “Microclusters,” Springer Series in Material Sciences IV, S. Sugano, Y. Nishina, and S. Onishi, eds., Springer, Berlin (1987)Google Scholar
  3. (b) “Elemental and Molecular Clusters,” Springer Series in Material Sciences VI, G. Benedek, T.P. Martin, and G. Pacchioni, eds., Springer, Berlin (1988)Google Scholar
  4. 3.
    P. Ballone, W. Andreoni, R. Car, and M. Parrinello, Equilibrium structures and finite temperature properties of silicon microclusters from ab-initio molecular dynamics calculations, Phys. Rev. Left. 60: 271 (1988).ADSCrossRefGoogle Scholar
  5. 4.
    R. Car and M. Parrinello, Unified approach for molecular dynamics and density-functional theory, Phys. Rev. Lett. 55: 2471 (1985).ADSCrossRefGoogle Scholar
  6. 5.
    P. Ballone, W. Andreoni, R. Car, and M. Parrinello, Temperature and segregation effects in alkali metals microclusters (Preprint)Google Scholar
  7. 6.
    For the exchange-correlation local density functional, we have used the approximation given in J. P. Perdew and A. Zunger, Self-interaction correction to density-functional approximation for many-electron systems, Phys. Rev. B 23: 5048 (1981).ADSCrossRefGoogle Scholar
  8. 7.
    D. R. Hamann, M. Schlüter, and C. Chiang, Norm-conserving pseudopotentials, Phys. Rev. Lett. 43: 1494 (1979).ADSCrossRefGoogle Scholar
  9. 8.
    See also D. Hohl, R. O. Jones, R. Car, and M. Parrinello, The structure of selenium clusters—Se3 to Se8, Chem. Phys. Lett. 139: 540 (1987).ADSCrossRefGoogle Scholar
  10. 9.
    G. B. Bachelet, D. R. Hamann, and M. Schlüter, Pseudopotentials that work: from H to Pu, Phys. Rev. B 26: 4199 (1982).ADSCrossRefGoogle Scholar
  11. 10.
    D. J. Chadi and M. L. Cohen, Special points in the Brillouin zone, Phys. Rev. B 38: 5747 (1973).MathSciNetADSCrossRefGoogle Scholar
  12. 11.
    Both the lattice parameter ap and the bulk modulus Bo were derived from fitting Murnaghan’s empirical equation of state to the calculated curve E(V) at constant energy cutoff. This procedure is known to give reliable results, even when the number of plane waves in the expansion of the wavefunctions is not sufficient to give fully converged energy values.Google Scholar
  13. 12.
    (a) M. T. Yin and M. L. Cohen, Theory of static structural properties, crystal stability and phase transformations: Application to silicon and germanium, Phys. Rev. B 26: 5668 (1982);ADSCrossRefGoogle Scholar
  14. (b).
    S. Froyen and M. L. Cohen, Structural properties of III-V zincblende semiconductors under pressure, Phys. Rev. B, 28: 3258 (1983);ADSCrossRefGoogle Scholar
  15. (c).
    O. H. Nielsen and R. M. Martin, Stress in semiconductors: Ab-initio calculations on Si, Ge and GaAs, Phys. Rev. B 32: 3792 (1985).ADSCrossRefGoogle Scholar
  16. 13.
    D. Tomânek and M. A. Schlüter. Structure and bonding of small silicon clusters, Phys. Rev. B 36: 1208 (1987).ADSCrossRefGoogle Scholar
  17. 14.
    (a) K. Raghavachari, Theoretical study of small silicon clusters: Equilibrium geometries and electronic structures of Sin (n = 2–7, 10), J. Chem. Phys. 84: 5672 (1986);ADSCrossRefGoogle Scholar
  18. (b).
    G. Pacchioni and J. Kouteckÿ, Silicon and germanium clusters: A theoretical study of their electronic structures and properties, J. Chem. Phys. 84: 3301 (1986).ADSCrossRefGoogle Scholar
  19. 15.
    O. Cheshnovsky, S. H. Yang, C. L. Pettiette, M. J. Craycraft, Y. Liu, and R. E. Smalley, Ultraviolet photoelectron spectroscopy of semiconductor clusters: silicon and germanium, Chem. Phys. Lett. 138: 119 (1987).ADSCrossRefGoogle Scholar
  20. 16.
    S. C. O’Brien, Y. Liu, Q. Zhang, J. R. Heath, F. K. Tittel, R. F. Curl, and R. E. Smalley, Supersonic cluster beams of III-V semiconductors: GaxAsy, J. Chem. Phys. 84: 4074 (1986).ADSGoogle Scholar
  21. 17.
    C. Bréchignac and P. H. Cahuzac, Evolution of photoionization spectra of metal clusters as a function of size, Z. Phys. D 3: 121 (1987).ADSCrossRefGoogle Scholar
  22. 18.
    M. M. Kappes, M. Schär, and E. Schumacher, Are cluster abundances thermodynamic properties? Observation of lithium enrichment in LixNann-x, n < 42, J. Phys. Chem. 91: 658 (1987).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Wanda Andreoni
    • 1
  • Giorgio Pastore
    • 1
  • Roberto Car
    • 2
  • Michele Parrinello
    • 2
  • Paolo Giannozzi
    • 3
  1. 1.IBM Research DivisionZurich Research LaboratoryRüschlikonSwitzerland
  2. 2.International School for Advanced StudiesTriesteItaly
  3. 3.Institut de Physique ThéoriqueUniversité de LausanneLausanneSwitzerland

Personalised recommendations