Skip to main content

The Effects of Ordering in Ternary Semiconductor Alloys: Electronic and Structural Properties

  • Chapter
Band Structure Engineering in Semiconductor Microstructures

Part of the book series: NATO ASI Series ((NSSB,volume 189))

  • 237 Accesses

Abstract

The relative strain energies of five types of ordered structures derived from a parent zinc-blende alloy A1−xBxC have been investigated. The most stable x = 1/2 and x = 1/4 or 3/4 structures are chalcopyrite and famatinite. Also investigated is the influence of order and strain on the bandstructure of the ordered compounds. Calculated tight-binding band gaps of ordered compounds of the All−xGaxAs family yield results not too different from those for the alloy. Band gaps for a same-cation family of compounds derived from GaAs1−xSbx exhibit a large bowing as a function of composition x similar to that reported experimentally for a metastable form of the alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. S. Kuan, T. F. Kuech, W. I. Wang, and E. L. Wilkie, Phys. Rev. Lett. 54, 201 (1985).

    Article  ADS  Google Scholar 

  2. H. R. Jen, M. J. Cherng, and G. B. Stringfellow, Appl. Phys. Lett. 48, 1603 (1986).

    Article  ADS  Google Scholar 

  3. T. S. Kuan, W. I. Wang, and E. L. Wilkie, Appl. Phys. Lett. 51, 51 (1987).

    Article  ADS  Google Scholar 

  4. M. A. Shahid, S. Mahajan, D. E. Laughlin, and H. M. Cos, Phys. Rev. Lett. 58, 2567 (1987).

    Article  ADS  Google Scholar 

  5. H. Nakayama and H. Fujita, in Gallium Arsenide and Related Compounds -- 1985, edited by M. Fujimoto, IOP Conference Proceedings No. 79 ( Institute of Physics, Bristol and London, 1986 ), p. 289.

    Google Scholar 

  6. For a review, see D. de Fontaine, in Solid State Physics, edited by H. Ehrenreich, F. Seitz, and D. Turnbull ( Academic, New York, 1979 ), Vol. 34, p. 73.

    Google Scholar 

  7. M. J. Richards and J. W. Cahn, Acta Metall. 19, 1263 (1971); see also correction by S. M. Allen and J. W. Cahn, Scripta Metall. 7, 1261 (1973).

    Article  Google Scholar 

  8. A. A. Mbaye, L. G. Ferreira, and A. Zunger, Phys. Rev. Lett. 58, 49 (1987). See also G. P. Srivastava, J. L. Martins, and A. Zunger, Phys. Rev. B31, 2561 (1985).

    Google Scholar 

  9. See A. A. Mbaye, D. M. Wood, and A. Zunger, Phys. Rev. B37, 3008 (1988) and references quoted therein.

    Google Scholar 

  10. W. A. Harrison, Electronic Structure and the Properties of Solids (W. H. Freeman, San Francisco, 1980 ).

    Google Scholar 

  11. P. Vogl, H. P. Hjalmarson, and J. D. Dow, J. Phys. Chem. Solids 44, 365 (1983).

    Article  ADS  Google Scholar 

  12. J. C. Mikkelsen and J. B. Boyce, Phys. Rev. Lett. 49, 1412 (1982).

    Article  ADS  Google Scholar 

  13. P. N. Keating, Phys. Rev. 145, 637 (1966); R. M. Martin, Phys. Rev. B6, 4546 (1972).

    Google Scholar 

  14. J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954).

    Article  ADS  MATH  Google Scholar 

  15. When experimental results are unavailable, we use theoretical estimates for the valence-band offset, as described in W. A. Harrison, Phys. Rev. BU, 5835 (1981) and in E. A. Kraut, J. Vac. Sci. Technol. B2, 488 (1984).

    Google Scholar 

  16. A. Kobayashi, O. F. Sankey, and J. D. Dow, Phys. Rev. B25, 6367 (1982).

    Article  ADS  Google Scholar 

  17. K. E. Newman, J. Shen, and D. Teng, unpublished.

    Google Scholar 

  18. A. Sher, M. van Schilfgaarde, A.-B. Chen, and W. Chen, Phys. Rev. B36, 4279 (1987).

    Article  ADS  Google Scholar 

  19. K. C. Hass and D. Vanderbilt, J. Vac. Sci. Technol. A5, 3019 (1987).

    Article  ADS  Google Scholar 

  20. U. Kaufman and J. Schneider, Festkorperprobleme XIV, edited by H. J. Queisser (Pergamon, 1974 ) p. 229.

    Google Scholar 

  21. M. B. Thomas, W. M. Coderre, J. C. Woolley, Phys. Status Solidi 2 (a), K141 (1970).

    Google Scholar 

  22. A. Baldereschi, E. Hess, K. Maschke, H. Neumann, K. R. Schulte, and K. Unger, J. Phys. C10, 4709 (1977).

    ADS  Google Scholar 

  23. Others have also estimated the (001) superlattice band gap. For example, D. M. Wood, S.-H. Wei, and A. Zunger, Phys. Rev. B37, 1342 (1988) report a value of 2.14 eV, 0.10 eV below that for the alloy. The reported resonant Raman (0 0 1) superlattice band gap is 2.15 eV: M. Cardona, T. Suemoto, N. E. Christensen, T. Isu, and K. Ploog, Phys. Rev. B36, 5906 (1987).

    Google Scholar 

  24. For All,GaXAs, we use the experimental offset 0.48 eV from D. J. Wolford, T. F. Kuech, J. A. Bradley, M. A. Grell, D. Ninno, and M. Jaros, J. Vac. Sci. Technol. B4, 1043 (1986).

    Google Scholar 

  25. J. Klem, D. Huang, H. Morkoç, Y.E. Ihm, and N. Otsuka, Appl. Phys. Lett. 50, 1364 (1987) and Y.-E. Ihm, N. Otsuka, J. Klem, and H. Morkoc, Appl. Phys. Lett. 51, 2013 (1987).

    ADS  Google Scholar 

  26. For a discussion of alloy band-gap variation in Ga0.5In0.5P, see A. Gomyo, T. Suzuki, K. Kobayashi, S. Kawata, I. Hino, and T. Ysasa, Appl. Phys. Lett. 50, 673 (1987).

    Google Scholar 

  27. For a discussion of alloy bowing in terms of chalcopyrite band gaps, see A. Zunger, International Journal of Quantum Chemistry: Quantum Chemistry Symposium 19, 629 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Newman, K.E., Teng, D., Shen, J., Gu, BL. (1989). The Effects of Ordering in Ternary Semiconductor Alloys: Electronic and Structural Properties. In: Abram, R.A., Jaros, M. (eds) Band Structure Engineering in Semiconductor Microstructures. NATO ASI Series, vol 189. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0770-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0770-0_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0772-4

  • Online ISBN: 978-1-4757-0770-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics