The Effects of Ordering in Ternary Semiconductor Alloys: Electronic and Structural Properties

  • Kathie E. Newman
  • Dan Teng
  • Jun Shen
  • Bing-Lin Gu
Part of the NATO ASI Series book series (NSSB, volume 189)

Abstract

The relative strain energies of five types of ordered structures derived from a parent zinc-blende alloy A1−xBxC have been investigated. The most stable x = 1/2 and x = 1/4 or 3/4 structures are chalcopyrite and famatinite. Also investigated is the influence of order and strain on the bandstructure of the ordered compounds. Calculated tight-binding band gaps of ordered compounds of the All−xGaxAs family yield results not too different from those for the alloy. Band gaps for a same-cation family of compounds derived from GaAs1−xSbx exhibit a large bowing as a function of composition x similar to that reported experimentally for a metastable form of the alloy.

Keywords

Bravais Lattice Lower Strain Energy Compound GaAs Large Bowing Ternary Semiconductor Alloy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. S. Kuan, T. F. Kuech, W. I. Wang, and E. L. Wilkie, Phys. Rev. Lett. 54, 201 (1985).ADSCrossRefGoogle Scholar
  2. 2.
    H. R. Jen, M. J. Cherng, and G. B. Stringfellow, Appl. Phys. Lett. 48, 1603 (1986).ADSCrossRefGoogle Scholar
  3. 3.
    T. S. Kuan, W. I. Wang, and E. L. Wilkie, Appl. Phys. Lett. 51, 51 (1987).ADSCrossRefGoogle Scholar
  4. 4.
    M. A. Shahid, S. Mahajan, D. E. Laughlin, and H. M. Cos, Phys. Rev. Lett. 58, 2567 (1987).ADSCrossRefGoogle Scholar
  5. 5.
    H. Nakayama and H. Fujita, in Gallium Arsenide and Related Compounds -- 1985, edited by M. Fujimoto, IOP Conference Proceedings No. 79 ( Institute of Physics, Bristol and London, 1986 ), p. 289.Google Scholar
  6. 6.
    For a review, see D. de Fontaine, in Solid State Physics, edited by H. Ehrenreich, F. Seitz, and D. Turnbull ( Academic, New York, 1979 ), Vol. 34, p. 73.Google Scholar
  7. 7.
    M. J. Richards and J. W. Cahn, Acta Metall. 19, 1263 (1971); see also correction by S. M. Allen and J. W. Cahn, Scripta Metall. 7, 1261 (1973).CrossRefGoogle Scholar
  8. 8.
    A. A. Mbaye, L. G. Ferreira, and A. Zunger, Phys. Rev. Lett. 58, 49 (1987). See also G. P. Srivastava, J. L. Martins, and A. Zunger, Phys. Rev. B31, 2561 (1985).Google Scholar
  9. 9.
    See A. A. Mbaye, D. M. Wood, and A. Zunger, Phys. Rev. B37, 3008 (1988) and references quoted therein.Google Scholar
  10. 10.
    W. A. Harrison, Electronic Structure and the Properties of Solids (W. H. Freeman, San Francisco, 1980 ).Google Scholar
  11. 11.
    P. Vogl, H. P. Hjalmarson, and J. D. Dow, J. Phys. Chem. Solids 44, 365 (1983).ADSCrossRefGoogle Scholar
  12. 12.
    J. C. Mikkelsen and J. B. Boyce, Phys. Rev. Lett. 49, 1412 (1982).ADSCrossRefGoogle Scholar
  13. 13.
    P. N. Keating, Phys. Rev. 145, 637 (1966); R. M. Martin, Phys. Rev. B6, 4546 (1972).Google Scholar
  14. 14.
    J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954).ADSMATHCrossRefGoogle Scholar
  15. 15.
    When experimental results are unavailable, we use theoretical estimates for the valence-band offset, as described in W. A. Harrison, Phys. Rev. BU, 5835 (1981) and in E. A. Kraut, J. Vac. Sci. Technol. B2, 488 (1984).Google Scholar
  16. 16.
    A. Kobayashi, O. F. Sankey, and J. D. Dow, Phys. Rev. B25, 6367 (1982).ADSCrossRefGoogle Scholar
  17. 17.
    K. E. Newman, J. Shen, and D. Teng, unpublished.Google Scholar
  18. 18.
    A. Sher, M. van Schilfgaarde, A.-B. Chen, and W. Chen, Phys. Rev. B36, 4279 (1987).ADSCrossRefGoogle Scholar
  19. 19.
    K. C. Hass and D. Vanderbilt, J. Vac. Sci. Technol. A5, 3019 (1987).ADSCrossRefGoogle Scholar
  20. 20.
    U. Kaufman and J. Schneider, Festkorperprobleme XIV, edited by H. J. Queisser (Pergamon, 1974 ) p. 229.Google Scholar
  21. 21.
    M. B. Thomas, W. M. Coderre, J. C. Woolley, Phys. Status Solidi 2 (a), K141 (1970).Google Scholar
  22. 22.
    A. Baldereschi, E. Hess, K. Maschke, H. Neumann, K. R. Schulte, and K. Unger, J. Phys. C10, 4709 (1977).ADSGoogle Scholar
  23. 23.
    Others have also estimated the (001) superlattice band gap. For example, D. M. Wood, S.-H. Wei, and A. Zunger, Phys. Rev. B37, 1342 (1988) report a value of 2.14 eV, 0.10 eV below that for the alloy. The reported resonant Raman (0 0 1) superlattice band gap is 2.15 eV: M. Cardona, T. Suemoto, N. E. Christensen, T. Isu, and K. Ploog, Phys. Rev. B36, 5906 (1987).Google Scholar
  24. 24.
    For All,GaXAs, we use the experimental offset 0.48 eV from D. J. Wolford, T. F. Kuech, J. A. Bradley, M. A. Grell, D. Ninno, and M. Jaros, J. Vac. Sci. Technol. B4, 1043 (1986).Google Scholar
  25. 25.
    J. Klem, D. Huang, H. Morkoç, Y.E. Ihm, and N. Otsuka, Appl. Phys. Lett. 50, 1364 (1987) and Y.-E. Ihm, N. Otsuka, J. Klem, and H. Morkoc, Appl. Phys. Lett. 51, 2013 (1987).ADSGoogle Scholar
  26. 26.
    For a discussion of alloy band-gap variation in Ga0.5In0.5P, see A. Gomyo, T. Suzuki, K. Kobayashi, S. Kawata, I. Hino, and T. Ysasa, Appl. Phys. Lett. 50, 673 (1987).Google Scholar
  27. 27.
    For a discussion of alloy bowing in terms of chalcopyrite band gaps, see A. Zunger, International Journal of Quantum Chemistry: Quantum Chemistry Symposium 19, 629 (1986).Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Kathie E. Newman
    • 1
  • Dan Teng
    • 1
  • Jun Shen
    • 1
  • Bing-Lin Gu
    • 2
  1. 1.Department of PhysicsUniversity of Notre DameNotre DameUSA
  2. 2.Department of PhysicsTsinghua UniversityBeijingPRC

Personalised recommendations