The Relative Contributions of Gene Conversion-Like Substitutions and Unique Mutations Toward Polymorphism Among MHC Class I Genes

  • L. R. Pease
  • D. E. Regnerus
  • B. K. Huntley
  • L. W. Duran
Part of the NATO ASI Series book series (NSSA, volume 144)


One of the most intriguing characteristics of the murine major histocompatibility complex (MHC) is the high degree of polymorphism associated with the class I and class II loci mapping in the K, D, and I regions. This polymorphism has two components. The first is the large number of alleles identified in the wild (Klein and Figueroa, 1981). None of these alleles is present in the population at high frequencies and the total number of alleles is estimated at over 100 (Goetze et al., 1980). The second component of this extraordinary polymorphism is the extensive structural diversity distinguishing alleles. Whereas allelic variants at other loci typically differ by a single or a few amino acids (Gates et al., 1981; Perlmutter et al., 1984; Kimura and Nerbert, 1986), MHC alleles tend to differ by 5 to 10 percent of their amino acids. The amino terminal 273 amino acids, which compose the extracellular portion of four class I alleles of the H-2K locus, are shown in Figure 1. The sequences are divided into three 91 amino acid segments representing the exon structure of the K structural gene. Comparison of these sequences reveals the high degree of structural diversity which is most prominent in the first two segments encompassing amino acids 1 through 182, but also discernible in the more conserved regions of the glycoprotein represented here by amino acids 183 through 273. Diversity in the amino terminal 182 amino acids is known to influence function (see Duran and Pease, 1986 for review). Sequence variation within this segment of the H-2K glycoprotein may be influenced by natural selection. Conversely, no functional differences have been associated with diversity in the remainder of the glycoprotein. Many of these substitutions may be selectively neutral.


Major Histocompatibility Complex Major Histocompatibility Complex Class None None Major Histocompatibility Complex Allele Transplantation Antigen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnold, B., Burget, H. G., Archibald, A. L., and Kvist, S., 1984, Complete nucleotide sequence of the murine H-Kk gene. Comparison of three alleles. Nucl. Acid. Res. 12: 9473.CrossRefGoogle Scholar
  2. Conner, B. J., Reyes, A. A., Itakura, K., Teplitz, R. L., Morin, C., and Wallace, R. B., 1983, Detection of sickle cell 5-globin allele by hybridization with synthetic oligonucleotides. Proc. Natl. Acad. Sci. (USA) 80: 278.CrossRefGoogle Scholar
  3. Devlin, J., Weiss, E. H., Paulson, M. and Flavell, R. A., 1985, Duplicated gene pairs and alleles of class I genes in the Qa2 region of the murine major histocompatibility complex: a comparison. EMBO J. 4: 3203.PubMedGoogle Scholar
  4. Duran, L. W. and Pease, L. R., 1986, Relating the structure of major transplantation antigens to immune function. Transplantation 41: 279.PubMedCrossRefGoogle Scholar
  5. Gates, F. T., III, Coligan, J. E. and Kindt, T. J., 1981, Complete amino acid sequence of murine ß2-microglobulin: Structural evidence for strain-related polymorphism. Proc. Natl. Acad. Sci. USA 78: 554.PubMedCrossRefGoogle Scholar
  6. Geliebter, J., Zeff, R. A., Schulze, D. H., Pease, L. R., Weiss, E. H., Mellor, A. L., Flavell, R. A., and Nathenson, S. G., 1986, Interaction between Kb and Q4 gene sequences generates the Kbm6 mutation. Molec. Cell. Biol. 6: 645.PubMedGoogle Scholar
  7. Gotze, D., Nadeau, J., Wakeland, E. K., Berry, R. J., Bonhomme, F., Egorov, I. K., Hjorth, J. P., Hoogstraal, H., Vives, J., Winking, H., and Klein, J., 1980, Histocompatibility-2 system in wild mice. X. Frequencies of H-2 and Ia antigens in wild mice from Europe and Africa. J. Immunol. 124: 2675.PubMedGoogle Scholar
  8. Kimura, S., and Nerbert, D. W., 1986, cDNA and complete amino acid sequence of mouse P2 (450): Allelic variant of mouse P3 (450) gene. Nucl. Acids Res. 14: 6765.PubMedCrossRefGoogle Scholar
  9. Klein, J., and Figueroa, F., 1981, Polymorphism of the mouse H-2 loci. Immunologic Rev. 60: 23.CrossRefGoogle Scholar
  10. Kvist, S., Roberts, L., and Dobberstein, B., 1983, Mouse histocompatibility genes: Structure and organization of a Kd gene. EMBO J. 2: 245.PubMedGoogle Scholar
  11. Lalanne, J. L., Bregegere, F., Delarbe, C., Abastado, J. P., Gachelin, G., and Kourilsky, P., 1982, Comparison of nucleotide sequences of mRNAs belonging to the mouse H-2 multigene family. Nucl. Acids Res. 10: 1039.PubMedCrossRefGoogle Scholar
  12. Linsk, R., Vogel, J., Stauss, H., Forman, J., and Goodenow, R. S., 1986, Structure and function of three novel MHC class I antigens derived from a C3H ultraviolet-induced fibrosarcoma. J. Exp. Med. 164: 794.PubMedCrossRefGoogle Scholar
  13. Maniatis, T., Fritsch, E. F., and Sambrook, J., 1982, Molecular cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 545 pp.Google Scholar
  14. Mellor, A. L., Weiss, E. H., Ramachandvan, K., and Flavell, R. A., 1983, A potential donor gene for the ball gene conversion event in the C57BL mouse. Nature 301: 792.CrossRefGoogle Scholar
  15. Mellor, A. L., Weiss, E. H., Kress, M., Jay, G., and Flavell, R. A., 1984, A nonpolymorphic gene in the murine major histocompatibility complex. Cell 36: 139.PubMedCrossRefGoogle Scholar
  16. Morita, T., Delarbre, C., Kress M., Kourilsky, and Gachelin, G., 1985, An H-2K gene of the tw32 mutant at the T/t complex is a close parent of an H-2Kq gene. Immunogenetics 21: 367.PubMedCrossRefGoogle Scholar
  17. Nathenson, S. G., Geliebter, J., Pfaffenbach, G. M., and Zeff, R. A., 1986, Murine major histocompatibility complex class-I mutants: molecular analysis and structure-function implications. Ann. Rev. Immunol. 4: 471CrossRefGoogle Scholar
  18. Pease, L. R., 1985, Diversity in H-2 genes encoding antigen-presenting molecules is generated by interactions between members of the major histocompatibility complex gene family. Transplantation 39: 227.PubMedCrossRefGoogle Scholar
  19. Pease, L. R., 1986, Relating diversity to function in the MHC. in: “Evolution and Vertebrate Immunity. The Antigen-Receptor and MHC Gene Families,” G. Kelsoe and D. H. Schulze, eds., University of Texas Press, Austin, p. 329–347.Google Scholar
  20. Pease, L. R., 1987, Relating diversity to function in the MHC. In Evolution and Vertebrate Immunity: The antigen-receptor and MHC gene families. G. Kelsoe and D. Schulze, eds. (The University of Texas Medical Branch at Galveston Press), pp. 329–347.Google Scholar
  21. Pease, L. R., Schulze, D. H., Pfaffenbach, G. M., and Nathenson, S. G., 1983, Spontaneous H-2 mutants provide evidence that a copy mechanism analagous to gene conversion generates polymorphism in the major hitocompatibility complex. Proc. Natl. Acad. Sci. 80: 242.PubMedCrossRefGoogle Scholar
  22. Perlmutter, R. M., Benson, B., Griffin, J. A., and Hood, L., 1985, Diversity in the germline antibody repertoire: molecular evolution of the T15 VH gene family. J. Exp. Med. 162: 1998.PubMedCrossRefGoogle Scholar
  23. Sher, B. T., Nairn, R., Coligan, J. E., and Hood, L. E., 1985, DNA sequence of the mouse H-2Dd transplantation antigen gene. Proc. Natl. Acad. Sci. USA 82: 1175.PubMedCrossRefGoogle Scholar
  24. Steinmetz, M., Winoto, A., Minard, K., and Hood, L., 1982, Clusters of genes encoding mouse transplantation antigens. Cell 28: 489.PubMedCrossRefGoogle Scholar
  25. Stephan, D., Sun, H., Lindahl, K. F., Meyer, E., Hammerling, G., Hood, L., and Steinmetz, M., 1986, Organization and evolution of D region class I genes in the mouse major histocompatibility complex. J. Exp. Med. 163: 1227.PubMedCrossRefGoogle Scholar
  26. Schulze, D. H., Pease, L. R., Geier, S. S., Reyes, A. A., Sarmiento, L. A., Wallace, R. B., and Nathenson, S. G., 1983a, Comparison of the cloned H-20m1 variant gene with the H-2Kb gene showns a cluster of seven nucleotide differences. Proc. Natl. Acad. Sci. USA 80: 2007.CrossRefGoogle Scholar
  27. Schulze, D. H., Pease, L. R., Obata, Y., Nathenson, S. G., Reyes, A. A., Ikuta, S., and Wallace, R. B., 1983b, Identification of the cloned gene for the murine transplantation antigen H-2Kb by hybridization with synthetic oligonucleotides. Molec. Cell. Biol. 3: 750.PubMedGoogle Scholar
  28. Wallace, R. B., Shaffer, J., Murphy, R. F., Bonner, J., Hirose, T., and Itakura, K., 1979, Hybridization of synthetic oligodroxyribonucleotides to 0X174 DNA: the effect of single base pair mismatch. Nuc. Acid Res. 6: 3543.CrossRefGoogle Scholar
  29. Weiss, E., Golden, L., Zakat, R., Mellor, A., Fahrner, K., Kvist, S., and Flavell, R. A., 1983a, The DNA sequence of the H-2Kb gene: evidence for gene conversion as a mechanism for the generation of polymorphism in histocompatibility antigens. EMBO J. 2: 453.PubMedGoogle Scholar
  30. Weiss, E. R., Mellor, A., Golden, L., Fahrner, K., Simpson, E., Hurst, J., and Flavell, R. A., 1983b, The structure of a mutant H-2 gene suggests that the generation of polymorphism in H-2 genes may occur by gene conversion-like events. Nature 301: 671.PubMedCrossRefGoogle Scholar
  31. Weiss, E. H., Golden, L., Fahner, K., Mellow, A. L., Devlin, J. J., Bullman, H., Tiddens, H., Bud, H., and Flavell, R. A., 1984, Organization and evolution of the class I gene family in the major histocompatibility complex of the C57BL/10 mouse. Nature 310: 650.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • L. R. Pease
    • 1
  • D. E. Regnerus
    • 1
  • B. K. Huntley
    • 1
  • L. W. Duran
    • 1
  1. 1.Department of Immunology, Mayo Medical SchoolMayo ClinicRochesterUSA

Personalised recommendations