Skip to main content

Genetic Control of T-Cell and NK-Cell Protection Against Lethal Sendai Virus Infection

  • Chapter
H-2 Antigens

Part of the book series: NATO ASI Series ((NSSA,volume 144))

Summary

The in vivo importance of class I MHC regulation of the cytotoxic T cell (Tc) response to a natural pathogenic agent of high virulence was studied on the basis of our demonstration of a major difference in the capacity to generate a Sendai virus-specific Tc response between C57BL/6 (B6, H-2b) mice and H-2Kb mutant B6.C-H-2bm1 (bm1) mice. These two mouse strains differ from each other only in three amino acids in the crucial H-2Kb restriction element for this response. Bm1 mice, in contrast to B6 mice, are Tc nonresponders against this virus, but show Sendai-specific T cell proliferation, antibody production, and delayed type hypersensitivity (DTH) reactions, as well as natural killer (NK) cell activity, equal to those of B6 mice. Another H-2b mouse strain, the 129/J, also shows equal Sendai virus-specific Tc, T helper cell (Th), B cell and DTH responses compared to B6, but is virtually deficient in generating an NK cell response. B6, Sendai Tc-deficient bm1, T cell-deficient B6 nu/nu and NK low-responder 129/J mice differ from each other in susceptibility to lethal pneumonia induced by intranasal (i.n.) inoculation of virulent Sendai virus. The lethal dose (LD50) in B6 mice averages 152 TCID50, in bm1 mice 14 TCID50, in B6 nu/nu mice 0.5 TCID50 and in 129/J mice 0.2 TCID50. The importance of Tc is shown by the difference in susceptibility between B6 and bm1 mice and also by the complete protection of B6 nu/nu mice against infection with a lethal virus dose by i.v. injection of a Sendai virus-specific, IL-2 dependent and H-2Kb restricted B6 Tc clone. In vivo protection by this Tc clone is H-2Kb restricted. Apart from Tc, an important role for virus-specific Th cells is evident from the difference in susceptibility between bm1 and B6 nu/nu mice. This conclusion is supported by the demonstration that the mean survival time of B6 nu/nu and bm1 nu/nu mice can be significantly prolonged, in an I-Ab restricted manner, by the injection of in vitro-propagated, Sendai-specific B6 or bm1 Th clones after a lethal dose of Sendai virus, and by the demonstration that inoculation of these Th clones provides help to virus-specific Tc by means of IL-2 production. Strikingly, Th and Tc cooperate in anti-Sendai virus immunity, since permanent survival of lethally infected nu/nu mice is only achieved by inoculation of a mixture of Tc and Th clones or a mixture of a Tc clone and rIL-2. Furthermore, the difference in susceptibility to Sendai virus infection between B6 and bm1 mice provides a unique model for the study of MHC-disease associations. The importance of NK cells is revealed by the high susceptibility of 129/J mice to Sendai virus infection, although all other immune parameters measured appear to be normal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L.P. de Waal, W.M. Kast, R.W. Melvold, and C.J.M. Melief, Regulation of the cytotoxic T-lymphocyte response against Sendai virus analyzed with H-2 mutants. J. Immunol. 130: 1090 (1980).

    Google Scholar 

  2. R. Nairn, K. Yamaga, and S.G. Nathenson, Biochemistry of the gene product from murine MHC mutants. Ann. Rev. Genet. 14: 241 (1980).

    Article  PubMed  CAS  Google Scholar 

  3. L.R. Pease, D.H. Schulze, G.M. Pfaffenbach, and S.G. Nathenson, Spontaneous H-2 mutants provide evidence that a copy mechanism analogous to gene conversion generates polymorphism in the major histocompatibility complex. Proc. Natl. Acad. Sci. USA 80: 242 (1983).

    Article  PubMed  CAS  Google Scholar 

  4. W.M. Kast, L.P. de Waal, and C.J.M. Melief, Thymus dictates major histocompatibility comples (MHC) specificity and immune-response gene phenotype of class-II MHC-restricted T cells but not of class-I MHC-restricted T cells. J. Exp. Med. 160: 1752 (1984).

    Article  PubMed  CAS  Google Scholar 

  5. W.M. Kast, A.M. Bronkhorst, L.P. de Waal, and C.J.M. Melief, Cooperation between cytotoxic and helper T lymphocytes in protection against lethal Sendai virus infection. Protection by T cells is MHC-restricted and MHC-regulated; a model for MHC-disease associations. J. Exp. Med. 164:723 (1986).

    Google Scholar 

  6. M.R. Melino, S.L. Epstein, D.H. Sachs, and T.H. Hansen, Idiotypic and fluorometric analysis of the antibodies that distinguish the lesion of the I-A mutant B6.C-H-2bm12. J. Immunol. 131: 359 (1983).

    PubMed  CAS  Google Scholar 

  7. K.R. McIntyre and J.G. Seidman, Nucleotide sequence of mutant I-Abetabml2 gene is evidence for genetic exchange between mouse immune-response genes. Nature (Lond.) 308: 551 (1984).

    Article  CAS  Google Scholar 

  8. M.J. Collins Jr. and J.C. Parker, Murine virus contaminants of leukemia viruses and transplantable tumors. J. Natl. Cancer Inst. 49: 1139 (1972).

    PubMed  Google Scholar 

  9. J.C. Parker, M.D. Whiteman, and C.B. Richter, Susceptibility of inbred and outbred mouse strains to Sendai virus and prevalence of infection in laboratory rodents. Infect. Immun. 19: 123 (1978).

    PubMed Central  PubMed  CAS  Google Scholar 

  10. E.H. Lenette, General principles underlying laboratory diagnosis of virus and rickettsial infections, in: Diagnostic Procedures for Viral and Rickettsial Infections, 4th ed., American Public Health Association, Inc., New York (1969).

    Google Scholar 

  11. M.H. Schreier, R. Tees, A.A. Nordin, R. Benner, A.T.J. Bianchi, and M.J. van Zwieten, Functional aspects of helper T cell clones. Immunobiology 161: 107 (1982).

    Article  PubMed  CAS  Google Scholar 

  12. J.F. Bukowski, J.F. Warner, G. Dennert, and R.M. Welsh, Adoptive transfer studies demonstrating the antiviral effect of natural killer cells in vivo. J. Exp. Med. 161: 40 (1985).

    Article  PubMed  CAS  Google Scholar 

  13. Y.L.Lin and B.A. Askonas, Biological properties of an influenza- A virus-specific killer T-cell clone. Inhibition of virus replication in vivo and induction of delayed-type hypersensitivity reactions. J. Exp. Med. 154: 225 (1981).

    Google Scholar 

  14. P.M. Taylor and B.A. Askonas, Diversity in the biological properties of anti-influenza cytotoxic T-cell clones. Eur. J. Immunol. 13: 707 (1983).

    Article  PubMed  CAS  Google Scholar 

  15. A.E. Lukacher, V.L. Braciale, and T.J. Braciale, In-vivo effector function of influenza virus-specific cytotoxic T-lymphocyte clones is highly specific. J. Exp. Med. 160: 814 (1984).

    Article  PubMed  CAS  Google Scholar 

  16. K.K. Sethi, Y. Omata, and K.E. Schneweis, Protection of mice from fatal herpes-simplex virus type-1 infection by adoptive transfer of cloned virus-specific and H-2 restricted cytotoxic T lymphocytes. J. Gen. Virol. 64: 443 (1983).

    Article  PubMed  Google Scholar 

  17. J.A. Byrne and M.B.A. Oldstone, Biology of cloned cytotoxic T lymphocytes specific for lymphocytic choriomeningitis virus: clearance of virus in vivo. J. Virol. 51: 682 (1984).

    PubMed Central  PubMed  CAS  Google Scholar 

  18. F. Lehmann-Grube, U. Assmann, C. Loliger, D. Moskophidis, and J. Lohler, Mechanism of recovery from acute virus infection. I. Role of T lymphocytes in the clearance of lymphocytic choriomeningitis virus from spleens of mice. J. Immunol. 134: 608 (1985).

    PubMed  CAS  Google Scholar 

  19. G.L. Ada, K.-N. Leung, and H.C.J. Ertl, An analysis of effector T-cell generation and function in mice exposed to influenza A or Sendai virus. Immunol. Rev. 58: 6 (1981).

    Article  Google Scholar 

  20. E.L. Howes, W. Taylor, N.A. Mitchison, and E. Simpson, MHC matching shows that at least two T-cell subsets determine resistance to HSV. Nature (Lond.). 277: 67 (1979).

    Article  Google Scholar 

  21. D. Meruelo, H-2D control of leukemia susceptibility: mechanism and implications. J. Immunogenet. 7: 81 (1980).

    Article  PubMed  CAS  Google Scholar 

  22. P. Debre, B. Boyer, S. Gisselbrecht, A. Bismuth, and J.P. Levy, Genetic control of sensitivity to Moloney virus in mice. III. The three H-2-linked Rmv genes are immune response genes controlling the antiviral antibody response. Eur. J. Immunol. 10: 914 (1980).

    Article  PubMed  CAS  Google Scholar 

  23. W.J. Britt and B. Chesebro, H-2D control of recovery from Friend virus leukemia: H-2D region influences the kinetics of the T-lymphocyte response to Friend virus. J. Exp. Med. 157: 1736 (1983).

    Article  PubMed  CAS  Google Scholar 

  24. A. Vlug, H.J. Schoenmakers, and C.J.M. Melief, Genes of the H-2 complex regulate the antibody response to murine leukemia virus. J. Immunol. 126: 2355 (1981).

    PubMed  CAS  Google Scholar 

  25. A. Vlug, M. Zijlstra, R.E.Y. de Goede, W.G. Hesselink, H.J. Schoenmakers, and C.J.M. Melief, H-2 control of the cytotoxic antibody response against a newly defined MuLV-related cell-surface antigen: g(B10.A). Int. J. Cancer 31: 617 (1983).

    Article  PubMed  CAS  Google Scholar 

  26. M. Zijlstra, R.E.Y. de Goede, H. Schoenmakers, T. Radaszkiewics, and C.J.M. Melief, Ecotropic and dualtropic mink-cell focus-inducing murine leukemia viruses can induce a wide spectrum of H-2 controlled lymphoma types. Virology 138: 198 (1984).

    Article  PubMed  CAS  Google Scholar 

  27. F. Lilly and T. Pincus, Genetic control of murine viral leukemogenesis. Adv. Cancer Res. 17: 231 (1983).

    Google Scholar 

  28. P.C. Doherty and R.M. Zinkernagel, Capacity of sensitized thymus-derived lymphocytes to induce fatal lymphocytic choriomeningitis is restricted by the H-2 gene complex. J. Immunol. 114: 30 (1975).

    PubMed  CAS  Google Scholar 

  29. P.C. Doherty, M.B.C. Dunlop, C.R. Parish, and R.M. Zinkernagel, Inflammatory process in murine lymphocytic choriomeningitis is maximal in H-2K- or H-2D-compatibele interactions. J. Immunol. 117: 187 (1976).

    PubMed  CAS  Google Scholar 

  30. J.E. Allan and P.C. Doherty, Immune T cells can protect or induce fatal neurological disease in murine lymphocytic choriomeningitis. Cell. Immunol. 90: 401 (1985).

    Article  PubMed  CAS  Google Scholar 

  31. M.B.A. Oldstone, R. Ahmed, J. Byrne, M.J Buchmeier, Y. Riviere, and P. Southern, Virus and immune responses: lymphocytic choriomeningitis virus as a prototype model of viral pathogenesis. Brit. Med. Bull. 41: 70 (1985).

    PubMed  CAS  Google Scholar 

  32. R.M. Zinkernagel, C.J. Pfau, H. Hengartner, and A. Althage, Susceptibility to murine lymphocytic choriomeningitis maps to class-I MHC genes - A model for MHC/disease associations. Nature (Lond.) 316: 814 (1985).

    Article  CAS  Google Scholar 

  33. R.M. Zinkernagel, H. Hengartner, and L. Stitz, On the role of viruses in the evaluation of immune responses. Brit. Med. Bull. 41: 92 (1985).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kast, W.M., Voordouw, A.C., Melief, C.J.M. (1987). Genetic Control of T-Cell and NK-Cell Protection Against Lethal Sendai Virus Infection. In: David, C.S. (eds) H-2 Antigens. NATO ASI Series, vol 144. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0764-9_57

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0764-9_57

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0766-3

  • Online ISBN: 978-1-4757-0764-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics