H-2 Antigens pp 327-338 | Cite as

The End of H-2

  • Kirsten Fischer Lindahl
  • Bruce E. Loveland
  • C. Sue Richards
Part of the NATO ASI Series book series (NSSA, volume 144)

Abstract

Mta, the maternally transmitted antigen of mice, was discovered and its analysis was pursued because it seemingly had nothing to do with H-2. Immunization of NZB/B1NJ mice with H-2-compatible BALB/c cells gave rise to cytotoxic T lymphocytes (CTL) that killed target cells of more than eighty strains of mice, independent of their H-2 type. Cold target competition showed that they all shared one antigen, and it was hard to find a strain whose cells were not lysed (Fischer Lindahl et al. 1980). Mta was thus a clear exception to the rule that CTL are H-2-restricted, i.e. recognize their target antigens in association with one of the class I major histocompatibility antigens (MHC I), H-2K, H-2D and H-2L. Obviously, we were not dealing with a rare case of MHC II-restricted CTL either.

Keywords

Congenic Strain Histocompatibility Antigen Wild Mouse Restriction Element Kill Target Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barton, S.C., Surani, M.A.H., and Norris, M.L., 1984. Roles of paternal and maternal genomes in mouse development. Nature, 311: 374.PubMedCrossRefGoogle Scholar
  2. Chan, T., and Fischer Lindahl, K., 1985. Skin graft rejection due to a maternally transmitted antigen, Mta. Transplantation, 39: 477.CrossRefGoogle Scholar
  3. Fazekas de St.Groth, S., 1981. The joint evolution of antigens and antibodies, in: “The Immune System. Vol. I: Past and Future,” C.M. Steinberg and I. Lefkovits, eds., Karger, Basel, pp. 155.Google Scholar
  4. Ferris, S.D., Ritte, U., Fischer Lindahl, K., Prager, E.M., and Wilson, A.C., 1983. Unusual type of mitochondrial DNA in mice lacking a maternally transmitted antigen. Nucleic Acids Res., 11: 2917.PubMedCentralPubMedCrossRefGoogle Scholar
  5. Fischer Lindahl, K., 1984. The Mta of spretus mice and new alleles of Hmt and Mtf. Ann. Rep. Basel Inst. Immunol., 13: 90.Google Scholar
  6. Fischer Lindahl, K., 1985a. Mitochondrial inheritance in mice. Trends Genet., 1: 135.CrossRefGoogle Scholar
  7. Fischer Lindahl, K., 1985b. The Hmt alleles of t haplotypes. Ann. Rep. Basel Inst. Immunol., 14: 64.Google Scholar
  8. Fischer Lindahl, K., 1985c. Tissue typing using biosynthetically labeled monoclonal antibodies, in: “Immunological Methods, Vol. III,” I. Lefkovits and B. Pernis, eds., Academic Press, New York, pp. 187.Google Scholar
  9. Fischer Lindahl, K., 1986. Genetic variants of histocompatibility antigens from wild mice. Curr. Top. Microbiol. Immunol., 127: 272.PubMedGoogle Scholar
  10. Fischer Lindahl, K., and Bürki, K., 1982. Mta, a maternally inherited cell surface antigen of the mouse, is transmitted in the egg. Proc. Natl. Acad. Sci. U.S.A., 79: 5362.PubMedCentralPubMedCrossRefGoogle Scholar
  11. Fischer Lindahl, K., and Hausmann, B., 1983. Cytoplasmic inheritance of a cell surface antigen in the mouse. Genetics, 103: 483.PubMedGoogle Scholar
  12. Fischer Lindahl, K., and Langhorne, J., 1981. Medial histocompatibility antigens. Scand. J. Immunol., 14: 643.PubMedCrossRefGoogle Scholar
  13. Fischer Lindahl, K., Bocchieri, M., and Riblet, R., 1980. Maternally transmitted target antigen for unrestricted killing by NZB T lymphocytes. J. Exp. Med., 152: 1583.CrossRefGoogle Scholar
  14. Fischer Lindahl, K., Hausmann, B., and Chapman, V.M., 1983. A new H-2-linked class I gene whose expression depends on a maternally transmitted factor. Nature, 306: 383.PubMedCrossRefGoogle Scholar
  15. Fischer Lindahl, K., Hausmann, B., Robinson, P.J., Guénet, J.-L., Wharton, D.C., and Winking, H., 1986. Mta, the maternally transmitted antigen, is determined jointly by the chromosomal Hmt and the extrachromosomal Mtf genes. J. Exp. Med., 163: 334.PubMedCrossRefGoogle Scholar
  16. Fischer Lindahl, K., Hausmann, B., and Guénet, J.-L., 1987. Distinct epitopes of the maternally transmitted antigen, Mta, determined by three allelic forms of the cytoplasmic gene Mtf. Submitted for publication.Google Scholar
  17. Fujimoto, S., and Yamagishi, H., 1987. Isolation of an excision product of T-cell receptor a-chain gene rearrangements. Nature, 327: 242.PubMedCrossRefGoogle Scholar
  18. Gotch, F., Rothbard, J., Howland, K., Towsend, A., and McMichael, A., 1987. Cytotoxic T lymphocytes recognize a fragment of influenza virus matrix protein in association with HLA-A2. Nature, 326: 881.PubMedCrossRefGoogle Scholar
  19. Han, A.C., Rodgers, J.R., and Rich, R.R., 1987. Unglycosylated Mtaa expressed an Mtab-like determinant. Immunogenetics, 25: 234.PubMedCrossRefGoogle Scholar
  20. Hirama, M., and Fischer Lindahl, K., 1985. Mouse mitochondria and the cell surface, in: “Achievements and perspectives of mitochondrial research, Vol. II: Biogenesis,” E. Quagliariello, E.C. Slater, F. Palmieri, C. Saccone, and A.M. Kroon, eds., Elsevier, Amsterdam, pp. 445.Google Scholar
  21. Huston, M.M., Smith, R., III, Huston, D.P., and Rich, R.R., 1983. Differences in maternal lineages of New Zealand black mice defined by restriction endonuclease analysis of mitochondrial DNA and by expression of maternally transmitted antigen. J. Exp. Med., 157: 2154.PubMedCrossRefGoogle Scholar
  22. Huston, M.M., Smith, R., III, Hull, R., Huston, D.P., and Rich, R.R., 1985. Mitochondrial modulation of maternally transmitted antigen: analysis of cell hybrids. Proc. Natl. Acad. Sci. U.S.A., 82: 3286.PubMedCentralPubMedCrossRefGoogle Scholar
  23. Hyafil, F. and Strominger, J.L., 1979. Dissociation and exchange of the 52-microglobulin subunit of HLA-A and HLA-B antigens. Proc. Natl. Acad. Sci. U.S.A., 76: 5834.PubMedCentralPubMedCrossRefGoogle Scholar
  24. Jeng, M.W., Finegold, M.J., Basch, R.S., and Lamm, M.E., 1978. Demonstration of thymus-leukemia (TL) antigens on mitochondria of lymphoid cells by immunoelectron microscopy. Lab. Invest., 38: 41.PubMedGoogle Scholar
  25. Kiefer, M.C., Steinmetz, M., and Fischer Lindahl, K., 1985. Genetic mapping in the Tla:Qa-1 region of the mouse MHC by restriction enzyme site polymorphisms. Ann. Rep. Basel Inst. Immunol., 14: 51.Google Scholar
  26. McGrath, J., and Solter, D., 1984. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell, 37: 179.PubMedCrossRefGoogle Scholar
  27. Morrison, L.A., Lukacher, A.E., Braciale, V.L., Fan, D.P., and Braciale, T.J., 1986. Differences in antigen presentation to MHC class I- and II-restricted influenza virus-specific cytolytic T lymphocyte clones. J. Exp. Med., 163: 903.PubMedCrossRefGoogle Scholar
  28. Murphy, D.B., and Homer, R.H., 1987. A Q region product as a restriction element, in: “Major Histocompatibility Genes and their Roles in Immune Function,” C.S. David, ed., Plenum, New York.Google Scholar
  29. Okazaki, K., Davis, D.D., and Sakano, H., 1987. T cell receptor ß gene sequences in the circular DNA of thymocyte nuclei: direct evidence for intramolecular DNA deletion in V-D-J joining. Cell, 49: 477.PubMedCrossRefGoogle Scholar
  30. Palmiter, R.D., Wilkie, T.M., Chen, H.Y., Brinster, R.L., 1983. Transmission distortion and mosaicism in an unusual transgenic mouse pedigree. Cell, 36: 869.CrossRefGoogle Scholar
  31. Parnes, J.R., and Seidman, J.G., 1982. Structure of wild type and mutant mouse 52-microglobulin genes. Cell, 29: 661.PubMedCrossRefGoogle Scholar
  32. Rodgers, J.R., Smith, R., III, Huston, M.M., and Rich, R.R., 1986. Maternally transmitted antigen. Adv. Immunol., 33: 313.CrossRefGoogle Scholar
  33. Rodgers, J.R., Smith, R., III, and Rich, R.R., 1987. Maternally transmitted antigens are codominantly expressed by mouse cells containing two kinds of mitochondrial DNA. J. Exp. Med., 165: 560.PubMedCrossRefGoogle Scholar
  34. Shen, F.W., Chaganti, R.S.K., Doucette, L.A., Litman, G.W., Steinmetz, M., Hood, L., and Boyse, E.A., 1984. Genomic constitution of an H-2:Tla variant leukemia. Proc. Natl. Acad. Sci. U.S.A., 81: 6447.PubMedCentralPubMedCrossRefGoogle Scholar
  35. Smith, R., III, and Rich, R.R., 1985. Polymorphism and tissue distribution of maternally transmitted antigen defined by cytotoxic T lymphocyte lines. J. Immunol., 134: 2191.PubMedGoogle Scholar
  36. Smith, R., III, Huston, M.M., Jenkins, R.N., Huston, D.P., and Rich, R.R., 1983. Mitochondria control expression of a murine cell surface antigen. Nature, 306: 599.PubMedCrossRefGoogle Scholar
  37. Steinmetz, M., Frelinger, J.G., Fisher, D., Hunkapillar, T., Pereira, D., Weissman, S.M., Uehara, H., Nathenson, S., and Hood, L., 1981. Three cDNA clones encoding mouse transplantation antigens: homology to immunoglobulin genes. Cell, 24: 125.PubMedCrossRefGoogle Scholar
  38. Townsend, A.R.M., Rothbard, J., Gotch, F.M., Bahadur, G., Wraith, D., and McMichael, A.J., 1986. The epitopes of influenza nucleoprotein recognized by cytotoxic T lymphocytes can be defined with short synthetic peptides. Cell, 44: 959.PubMedCrossRefGoogle Scholar
  39. Yonekawa, H., and Fischer Lindahl, K., 1987. Searching for the molecular basis of a mitochondrial transplantation antigen. Genetics, 116: s41.Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Kirsten Fischer Lindahl
    • 1
  • Bruce E. Loveland
    • 1
  • C. Sue Richards
    • 1
  1. 1.Howard Hughes Medical Institute and Departments of Microbiology and BiochemistryUniversity of Texas Health Science Center at DallasDallasUSA

Personalised recommendations