Skip to main content

Can Heterozygote Advantage Account for the Maintenance of H-2 Polymorphisms

  • Chapter

Part of the book series: NATO ASI Series ((NSSA,volume 144))

Abstract

Discovering the forces that maintain the extreme polymorphisms found at loci within the major histocompatibility complex (MHC) is critical to understanding the role of MHC gene products in nature. It is often assumed that MHC polymorphisms are maintained in natural populations by heterozygote advantage. The feasibility of this assumption is examined by applying population genetics models developed by Sewall Wright to relevant parameters for the MHC of Mus musculus (H-2). The parameters that affect the number of alleles that can be maintained (assuming random mating) are effective population size (Ne), mutation rate (p), and the selection against homozygotes relative to heterozygotes (s). The number of alleles that can be maintained for various combinations of Ne, p, and s are presented graphically. Even with extreme parameter values maximizing the number of alleles at equilibrium (Ne=100, p=10−4, s=1) only about seven alleles can be maintained within local populations. More commonly accepted sets of parameters indicate that heterozygote advantage could only account for the maintenance of four to five alleles. An analysis of previously published data suggest that local populations carry approximately ten alleles at both the K and D loci. These results indicate that either our estimates of the relevant parameters and number of alleles actually maintained contain significant errors, or that factors other than heterozygote advantage contribute to the maintenance of H-2 polymorphisms. We briefly review a number of mechanisms other than heterozygote advantage that could play a role in the maintenance of MHC polymorphisms, including frequency dependent selection, variation in pathogen assemblages across space and time, mating preferences, and transmission distortion. We present data from a retrospective analysis of backcross and F2 matings made during the early development of H-2 homozygous lines that show transmission distortion leading to a 52% deficiency of H-2 homozygotes (n=80, p<.002). This level of transmission distortion would contribute significantly to the maintenance of H-2 polymorphisms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Batten, C.A. and R.J. Berry, 1967, Prenatal mortality in wild-caught house mice, J. Anim. Ecol. 36:453–463.

    Google Scholar 

  • Baxevanis, C.N., D. Wernet, Z.A. Nagy, P.H. Maurer, and J. Klein, 1980, Genetic control of T-cell proliferation responses to poly(glu40 ala60) and poly(glu51 lys34 tyr15): Subregion-specific inhibition of the responses with monoclonal Ia antibodies, Immunogenet. 11: 617–628.

    Google Scholar 

  • Beer, A.E., A.E. Semprini, Z. Xiaoyu, and J.F. Quebbeman, 1985, Pregnancy outcome in human couples with recurrent spontaneous abortions: HLA antigen profiles; HLA antigen sharing; female serum MLR blocking factors; and paternal leukocyte immunizations, Exp. Clin. Immunogenet. 2:137–153.

    Google Scholar 

  • Benacerraf, B. and M.E. Dorf, 1976, Genetic control of specific immune responses and immune suppressions by I-region genes, Cold Springs Harbor Symp. Quant. Biol., 41:465–475.

    Google Scholar 

  • Benoist, C.O., D.J. Mathis, M.R. Kanter, V.E. Williams II, and H.O. McDevitt, 1983, Regions of allelic hypervariability in the murine Aa immune response gene, Cell, 34: 169–177.

    Article  PubMed  CAS  Google Scholar 

  • Berry, R.J., 1981, Population dynamics of the house mouse, pp. 395–425, in “Biology of the House Mouse”, R.J. Berry, ed., Academic Press, N.Y.

    Google Scholar 

  • Billingham, R.E. and W.K. Silvers, 1959, Inbred animals and tissue transplantation immunity, Transpl. Bull. ’(Plas. Recon. Surg.) 6:399–403.

    Google Scholar 

  • Bischof, P., M. Jeannet, B. Bourrit, P. Vuagnat, W.L. Herrmann, and P.C. Sizonenko, 1985, Mating is random, Am. J. Reprod. Immunol. Microbiol. 7: 124–126.

    Google Scholar 

  • Black, F.L. and F.M. Salzano, 1981, Evidence for heterosis in the HLA system, Am. J. Hum. Genet. 33: 894–899.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bodmer, W.F., 1972, Evolutionary significance of the HL-A system, Nature 237:139–145.

    Google Scholar 

  • von Boehmer, H., C.G. Fathman, and W. Haas, 1977, H-2 gene complementation in cytotoxic T-cell responses of female against male cells, Eur. J. Immunol. 7: 443–447.

    Article  Google Scholar 

  • Boue, J., A. Boue, and P. Lazar, 1975, Retrospective and prospective epidemiological studies of 1500 karyotyped spontaneous human abortions, Teratol. 12: 11–26.

    CAS  Google Scholar 

  • Bowman, J.C. and D.S. Falconer, 1960, Inbreeding depression and heterosis of litter size in mice, Genet. Res. Camb. 1: 262–274.

    Google Scholar 

  • Boyce, E.A., G.K. Beauchamp, and K. Yamakazi, 1983, The sensory perception of genotypic polymorphism of the major histocompatibility complex and other genes: some physiological and phylogenetic implications, Hum. Immunogenet. 6: 177–183.

    Article  Google Scholar 

  • Bubbers, J.E., K.J. Blank, H.A. Freedman, and F. Lilly, 1977, Mechanisms of the H-2 effect on viral leukemogenesis, Scand. J. Immunol. 6:533–539. Clarke, B. and D.R.S. Kirby, 1966, Maintenance of histocompatibility polymorphisms, Nature 211: 999–1000.

    Google Scholar 

  • Conner, J.L. and M.J. Bellucci, 1979, Natural selection resisting inbreeding depression in captive wild housemice (Mus musculus), Evol. 33:927–940.

    Google Scholar 

  • Cudworth, A.G., E. Wolf, A.N. Gorsuch, H. Festenstein, 1979, A new look at HLA genetics with particular reference to Type-1 Diabetes, Lancet îi:389–391.

    Google Scholar 

  • Degos, L., J. Colombani, A. Chaventre, B. Bengston, and A. Jacquard, 1974, Selective pressure on HLA polymorphism, Nature 249: 62–63.

    CAS  Google Scholar 

  • Doherty, P.C. and R.M. Zinkernagel, 1975, Enhanced immunological surveillance in mice heterozygous at the H-2 gene complex, Nature 256: 50–52.

    CAS  Google Scholar 

  • Dorf, M.E. and B. Benacerraf, 1975, Complementation of H-2-linked Ir genes in the mouse, Proc. Natl. Acad. Sci., 72:3671–3675.

    Google Scholar 

  • Drife, J.O., 1983, What proportion of pregnancies are spontaneously aborted? Brit. Med. Journal 286: 294.

    Google Scholar 

  • Duncan, W.R., E.K. Wakeland, and J. Klein, 1979, Heterozygosity of H-2 loci in wild mice, Nature 281: 603–605.

    CAS  Google Scholar 

  • Estess, P., A.B. Begovich, M. Koo, P.P. Jones, and H.O. McDevitt, 1986

    Google Scholar 

  • Sequence analysis and structure-function correlation of murine g, k, u, s, and f haplotype I-Ab cDNA clones, Proc. Natl. Acad. Sci. USA, 83:3594–3598.

    Google Scholar 

  • Figueroa, F., H. Tichy, R.J. Berry, and J. Klein, 1986, MHC polymorphism in island populations of mice, Curr. Top. Microbiol. Immunol. 127:100–105. Gill, T.J., 1983, Immunogenetics of spontaneous abortions in humans, Transplan. 35:1–6.

    Google Scholar 

  • Gill, T.J., 1985, Immunity and pregnancy, Grit. Rev. Immunol. 5: 201–227.

    Google Scholar 

  • Gomard, E., V. Duprez, T. Reme, M.J. Colombani, and T.P. Levy, 1977, Exclusive involvement of H-2Db or H-2Kd product in the interaction between T-killer lymphocytes and syngeneic H- 2b or H-2d viral lymphomas, J. Exp. Med., 146: 909–922.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gotze, D., J. Nadeau, E.K. Wakeland, R.J. Berry, F. Bonhomme, J.K. Egorov, J.P. Hjorth, H. Hoogstraal, J. Vives, H. Winking, and J. Klein, 1980, Histocompatibility-2 system in wild mice. X. Frequencies of H-2 and Ia antigens in wild mice from Europe and Africa, J. Immunol. 124: 2675–2681.

    PubMed  CAS  Google Scholar 

  • Green, E., 1966, Breeding systems, pp. 11–22, in “Biology of the Laboratory Mouse”, 2nd ed., E.Green, ed., McGraw-Hill, N.Y.

    Google Scholar 

  • Hamilton, B.L., A. Hamilton, and M.S. Hamilton, 1985, Maternal-fetal disparity at multiple minor histocompatibility loci affects the weight of the feto-placental unit in mice, J. Reprod. Immunol. 8:257–261.

    Google Scholar 

  • Hamilton, M. and I. Hellstrom, 1978, Selection for histoincompatible progeny in mice, Biol. Reprod. 19:267–270.

    Google Scholar 

  • Hamilton, W.D., 1982, Pathogens as causes of genetic diversity in their host populations, pp. 269–296, in “Population Biology of Infectious Diseases, Dahlem Konferenzen, R.M. Anderson and R.M. May, eds., Springer-Verlag, Heidelberg.

    Google Scholar 

  • Hartl, D., 1980, “Principles of Population Genetics”, Sinauer, Sunderland. Hedrick, P.W., 1972, Maintenance of genetic variation with a frequency dependent selection model as compared to the overdominant model, Genetics 72: 771–775.

    Google Scholar 

  • Hedrick, P.W. and G. Thomson, 1983, Evidence for balancing selection at HLA, Genet. 104: 449–456.

    CAS  Google Scholar 

  • Henson, V., N. Maclaren, W. Winter, W. Riley, J. Rotter, and E.K. Wakeland, 1986, Molecular genetics of insulin-dependent diabetes mellitus. Mol. Biol. Med., 3:129–136.

    Google Scholar 

  • Hings, I.M. and R.E. Billingham, 1981, Splenectomy and sensitization of Fischer female rats favors histoincompatibility of R2 back-cross progeny, Transplan. Proc. 13:1253–1255.

    Google Scholar 

  • Hings, I.M. and R.E. Billingham, 1983, Parity-induced changes in the frequency of RT1 heterozygotes in an R2 backcross, Transplan. Proc. 15:900–902.

    Google Scholar 

  • Hings I. and R.E. Billingham, 1985, Maternal-fetal immune interactions and the maintenance of major histocompatibility complex polymorphism in the rat, J. Reprod. Immunol. 7:337–350.

    Google Scholar 

  • Hunziker, R.D. and T.G. Wegmann, 1986, Placental immunoregulation, CRC Crit. Rev. Immunol. 6: 245–285.

    CAS  Google Scholar 

  • Ishii, N., C.N. Baxevanis, Z.A. Nagy, and J. Klein, 1981, Selection of H-2 molecules for the context of antigen recognition by T lymphocytes, Immunogenet. 14: 283–292.

    CAS  Google Scholar 

  • Jones, P., D. Murphy, and H. McDevitt, 1981, Variable synthesis and expression of Eu and AE(Eß) Ia polypeptide chains in mice of different H-2 haplotypes, Immunogenet. 12: 321–337.

    CAS  Google Scholar 

  • Kappler, J.W., T. Wade, J. White, E. Kushnir, J. Bill, N. Roehm, and P. Marrack, 1987, A T cell receptor Vß segment which imparts reactivity to a class II major histocompatibility complex product, Cell, 49: 263–271.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, M. and J.F. Crow, 1964, The number of alleles that can be maintained in a finite population, Genetics 49: 725–738.

    CAS  Google Scholar 

  • Klein, J.: H-2 mutations: Their genetics and effect on immune function. Adv. Immunol. 26: 55–146, 1978

    Article  PubMed  CAS  Google Scholar 

  • Klein, J., 1986, “Natural History of the Major Histocompatibility Complex”, Wiley, N.Y.

    Google Scholar 

  • Klein, J. and F. Figueroa, 1981, Polymorphism of the mouse H-2 loci, Immunol. Rev., 60: 23–57.

    Article  CAS  Google Scholar 

  • Klitz, W., G. Thomson, and M.P. Baur, 1984, The nature of selection in the HLA region based on population data from the ninth workshop, pp. 330–332, in “Histocompatibility Testing 1984”, E.D. Albert, M.P. Baur, and W.R. Mayr, eds., Springer-Verlag, Berlin.

    Google Scholar 

  • Larhammar, D., L. Schenning, K. Gustaffson, K. Wiman, L. Claesson, L. Rask, and P.A. Peterson, 1982, Complete amino acid sequence of an HLA-DR antigen-like beta chain as predicted from the nucleotide sequence: similarities with immunoglobins and HLA-A, B, C antigens, Proc. Natl. Acad. Sci. USA, 79:3687–1500.

    Google Scholar 

  • Lewontin, R.C., L. R. Ginzburg, and S.D. Tuljapurkar, 1978, Heterosis as an explanation for large amounts of genic polymorphism Genet. 88: 149–170.

    CAS  Google Scholar 

  • Loeb, L., H.D. King, and H.T. Blumenthal, 1943, Transplantation and individuality differences in inbred strains of rats, Biol. Bull. 84:1–12.

    Google Scholar 

  • Lynch,C.B., 1977, Inbreeding effects upon animals derived from a wild population of Mus musculus, Evol. 31:526–537.

    Google Scholar 

  • Malissen, M., T. Hunkapiller, L. Hood, 1983, Nucleotide sequence of a light chain gene of the mouse I-A subregion: A-beta, Science 221: 750–754.

    CAS  Google Scholar 

  • Matis, L.S., P.P. Jones, D.B. Murphy, S.M. Hedrick, E.A. Lerner, C.A. Janeway, Jr., J.M. McNicholas, R.H. Schwartz, 1982, Immune response gene function correlates with the expression of an Ia antigen. II. A quantitative deficiency in Ae:E0 complex expression causes a corresponding defect in antigen-presenting cell function, J. Exp. Med. 155: 508–523.

    CAS  Google Scholar 

  • Mengle-Gaw, L. and H.O. McDevitt, 1985, Genetics and expression of mouse Ia antigens, Ann. Rev. Immunol. 3: 367–396.

    Article  CAS  Google Scholar 

  • Mowbray, J.F., H. Liddell, J.L. Underwood, C. Gibbings, P.W. Reginald, and R.W. Beard, 1985, Controlled trial of treatment of recurrent spontaneous abortion by immunisation with paternal cells, Lancet 1: 941–943.

    Google Scholar 

  • Nadeau, J.H., E.K. Wakeland, D. Gotze, and J. Klein, 1981, The population genetics of the H-2 polymorphism in European and North African populations of the house mouse (Mus musculus), Genet. Res. Camb. 37: 17–31.

    Google Scholar 

  • Ober, C., A. Martin, J. Simpson, W. Hauck, D. Amos, D. Kostyu, M. Fotino, and F. Allen, Jr., 1983, Shared HLA antigens and reproductive performance among Hutterites, Am. J. Hum. Genet. 35: 994–1004.

    Google Scholar 

  • Ober, C., W.W. Hauck, E. O’Brien, D.D. Kostyu, S. Elias, L. Cohen, R. Radvany, R. Anderson, J. Simpson, A.O. Martin, 1984, Decreased fertility among Hutterites sharing HLA-DR antigens, Amer. J. Hum. Genet. 36: 130s.

    Google Scholar 

  • O’Brien, S.J., M.E. Roelke, L. Marker, A. Newman, C.A. Winkler, D. Meltzer, L. Colly, J.F. Evermann, M. Bush, and D.E. Wildt, 1985, Genetic basis for species vulnerability in the cheetah, Science 227: 1428–1434.

    Google Scholar 

  • Palm, J. 1969, Association of maternal genotype and excess heterozygosity for Ag-B histocompatibility antigens among male rats, Trans. Proc. 1:82–84.

    Google Scholar 

  • Palm, J., 1970, Maternal-fetal interactions and histocompatibility antigen polymorphisms, Trans. Proc. 2:162–173.

    Google Scholar 

  • Palm, J., 1974, Maternal-fetal histoincompatibility in rats: An escape from adversity, Can. Res., 34: 2061–2065.

    Google Scholar 

  • Pease, L.R., D.H. Schulze, G.M. Pfaffenbach, and S.G. Nathenson, 1983, Spontaneous H-2 mutants provide evidence that a copy mechanism analogous to gene conversion generates polymorphism in the major histocompatibility complex, Proc. Natl. Acad. Sci. USA, 80:242–246.

    Google Scholar 

  • Pollack, M.S., C.J. Wysocki, G.K. Beauchamp, D. Braun Jr., C. Callaway, and B. Dupont, 1982, Absence of HLA association or linkage for variations in sensitivity to odor of androstenone, Immunogenet. 15: 579–589.

    PubMed  CAS  Google Scholar 

  • Rodriguez, G., G. Andersson, H. Wigzell, and A. Peck, 1979, Non-T cell nature of the naturally occurring, spleen associated suppressor cells present in the newborn mouse, Eur. J. Immunol. 9: 737–746.

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg, L.T., D. Cooperman, and R. Payne, 1983, HLA and mate selection, Immunogenet. 17: 89–93.

    Article  CAS  Google Scholar 

  • Sage, R.D., 1981, Wild mice, pp. 39–90, in “The Mouse in Biomedical Research”, Vol.I, H.L. Foster, J.D. Small, J.G. Fox, eds., Academic, N.Y. Schwartz, R.H., C.S. David, D.H. Sachs, and W.E. Paul, 1976, T lymphocyte-enriched murine peritoneal exudate cells III. Inhibition with anti-Ia antisera, J. Immunol. 117: 531–540.

    Google Scholar 

  • Shonnard, J.W., B.K. Davis, D.V. Cramer, S.F. Radka, and T.J. Gill III,1979, The association of immune responsiveness, mixed lymphocyte responses, and Ia antigens in natural populations of Norway rats, J. Immunol. 123: 778–783.

    Google Scholar 

  • Simpson, E. and R.D. Gordon, 1977, Responsiveness to H-Y antigen Ir gene complementation and target cells, Immunol. Rev., 35: 59–75.

    CAS  Google Scholar 

  • Solinger, A.M., M.E. Ultee, E. Margoliash, and R.H. Schwartz, 1979, T-lymphocyte response to cytochrome c. I. Demonstration of a T-cell heteroclitic proliferative response and identification of a topographic antigenic determinant on pigeon cytochrome c whose immune recognition requires two complementing major histocompatibility complex-linked immune response genes, J. Exp. Med., 150: 830–848.

    Article  PubMed  CAS  Google Scholar 

  • Takakuwa, K., K. Kanazawa, and S. Takeuchi, 1986, Production of blocking antibodies by vaccination with husband’s lymphocytes in unexplained recurrent aborters: the role in successful pregnancy, Am. J. Reprod. Immunol. and Microbiol. 10: 1–9.

    CAS  Google Scholar 

  • Taylor, C. and W.P. Faulk, 1981, Prevention of recurrent abortion with leucocyte transfusions, Lancet iî:68–70.

    Google Scholar 

  • Thomas, M.L., J.H. Harger, D.K. Wagner, B.S. Rabin, and T.J. Gill, 1985, HLA sharing and spontaneous abortion in humans, Am. J. Obstet. Gynec. 151: 1053.

    Article  PubMed  CAS  Google Scholar 

  • Tiwari, J.L. and P.I. Terasaki, 1985, “HLA and Disease Associations”, Springer-Verlag, N.Y.

    Google Scholar 

  • Treisman, M., 1981, The significance of immunity restriction by the major histocompatibility complex, and of the occurrence of high polymorphism at MHC loci: Two hypotheses, J. Theor. Biol. 89:409–421.

    Google Scholar 

  • Vadheim, C.M., J.I. Rotter, N.K. Maclaren, W.J. Riley, and C.E. Anderson: Selective transmission of insulin dependent diabetes genes? Pediat. Res., 19: A255.

    Google Scholar 

  • Wakeland, E.K. and J. Klein, 1981, The polymorphism of I region encoded antigens among wild mice, Curr. Trends in Histocompatibility 4: Wakeland, E.K. and J.H. Nadeau, 1980, Immune responsiveness and polymorphism of the major histocompatibility complex: an interpretation, pp. 149–156, in “Strategies of Immune Regulation”, E. I. Sercarz and A.J. Cunningham, eds., Academic Press, N.Y.

    Google Scholar 

  • Wakeland, E.K., M. Price-LaFace, V. Henson, and A.B. Peck, 1987, Production of 35 H-2 homozygous strains from wild mice, Immunogenet. (in press).

    Google Scholar 

  • Wallace, M.E., 1981, The breeding, inbreeding and management of wild mice, pp. 183–204, in “Biology of the House Mouse”, R.J. Berry, ed., Academic Press, N.Y.

    Google Scholar 

  • Watterson, G.A., 1977, Heterosis or neutrality? Genet. 85: 789–814.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Widera, G. and R.A. Flavell, 1984, The nucleotide sequence of the murine I-Eß6 immune gene: evidence for gene conversion events in class II genes of the major histocompatibility complex, EMBO J., 3: 1221–1225.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Williams, R.M., L.J. Kraus, P.T. Lavin, L.L. Steele, and E.J. Yunis, 1981, Genetics of survival in mice: localization of dominant effects to subregions of the major histocompatibility complex, pp. 247–266, in “Immunological Aspects of Ageing”, E. Segre and L. Smith, eds., Marcel Dekker, N.Y.

    Google Scholar 

  • Wright, S., 1939, The distribution of self-sterility alleles in populations, Genet. 24: 538–552.

    CAS  Google Scholar 

  • Wright, S., 1960, On the number of self-incompatibility alleles maintained in equilibrium by a given mutation rate in a population of a given size: A re-examination, Biometrics 16: 61–85.

    Google Scholar 

  • Wright. S., 1969, “Evolution and the Genetics of Populations, Vol. 2, The Theory of Gene Frequencies”, Univ. of Chicago Press, Chicago.

    Google Scholar 

  • Yamakazi, K., E.A. Boyse, V. Mike, H.T. Thaler, B.J. Mathieson, J. Abbott, J. Boyse, Z.A. Zayas, and L. Thomas, 1976, Control of mating preferences in mice by genes in the major histocompatibility complex, J. Exp. Med., 144: 1324–1335.

    Article  Google Scholar 

  • Yunis, E.J., A.L. Watson, R.S. Gelman, S.J. Sylvia, R. Bronson, M.E. Dorf, 1984, Traits that influence longevity in mice, Genet. 108: 999–1011.

    CAS  Google Scholar 

  • Zinkernagel, R.M., 1979, Associations between major histocompatibility antigens and susceptibility to disease, Ann. Rev. Microbiol. 33: 201–213.

    CAS  Google Scholar 

  • Zinkernagel R.M. and P.C. Doherty, 1974, Restriction of in vitro T-cell mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system, Nature 248: 701–702.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Potts, W.K., Manning, C.J., Peck, A.B., Price-LaFace, M., Wakeland, E.K. (1987). Can Heterozygote Advantage Account for the Maintenance of H-2 Polymorphisms. In: David, C.S. (eds) H-2 Antigens. NATO ASI Series, vol 144. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0764-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0764-9_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0766-3

  • Online ISBN: 978-1-4757-0764-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics