Diffusion in Oxides

  • Claude Monty
Part of the NATO ASI Series book series (NSSB)


Oxides are compounds whose interest has been increasing during the twenty last years in solving many application problems. The large spectrum of their properties related to different types of bondings is responsible for such a situation. Oxides are generally semi-ionic but some of them are taken as reference systems for ionic crystals, others are treated as covalent compounds and several oxides exhibit a metal/insulator transition. The property which identifies most easily the dominant character of a given oxide is the electrical conductivity which has been considered in a previous chapter: it is a way to characterize the electronic structure and the point defect population far from the equilibrium or at a given thermodynamic state /1/, /2/.


Point Defect Impurity Diffusion Vacancy Mechanism Stoichiometric Oxide Impurity Diffusion Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. /1/.
    P. Kofstadt, “Nonstoichiometry, Diffusion and Electrical Conductivity in binary oxides”, Wiley-Interscience (1972)Google Scholar
  2. /2/.
    F.A. Kroger, “The chemistry of imperfect crystals” North-Holland (1973)Google Scholar
  3. /3/.
    R. Dieckmann, Solid State Ionics 12: 1–22 (1984)CrossRefGoogle Scholar
  4. /4/.
    C. Monty, Ch. XII in “Defauts Ponctuels dans les Solides” Ed. de Physique, Orsay (1977)Google Scholar
  5. /5/.
    R. Farhi, G. Petot-Ervas, J. Phys. Chem. Sol. 39: 1169 (1978)ADSCrossRefGoogle Scholar
  6. /6/.
    A.B. Lidiard, chap. 3 in “Mass Transport in Solids” Ed. F. Benière and C.R.A. Catlow. NATO ASI Series B: Physics, Vol. 97 Plenum Press New York and London (1981)Google Scholar
  7. /7/.
    / P. Varotsos, K. Alexopoulos, Phys. Rev. B, 15: 5994 (1977)ADSCrossRefGoogle Scholar
  8. /8/.
    G. Slodzian, An. Phys. Paris, 9: 591–648 (1964)Google Scholar
  9. /9/.
    P. Contamin, G. Slodzian, C.R. Acad. Sciences Paris, Série C, 267: 805–808 (1968)Google Scholar
  10. /10/.
    D.Gupta.,Thin Solid Films 25: 231 (1975)ADSCrossRefGoogle Scholar
  11. /11/.
    A. Atkinson, R.I. Taylor, Phil, Mag A, 39: 581–595 (1979)ADSCrossRefGoogle Scholar
  12. /12/.
    W.K. Chu, J.W. Mayer, M.A. Nicolet, R.M. Buck, G. Amsel, P. Eisen Thin Solid Films 17: 1 (1973)ADSCrossRefGoogle Scholar
  13. /13/.
    J. Philibert, “Diffusion et Transport de Matière dans les Solides” Ed. de Physique, Orsay (1985)Google Scholar
  14. /14/.
    W.J. Moore, Y. Ebisuzaki, J.A.Sluss, J. Phys. Chem. 62: 1438–1441 (1958)CrossRefGoogle Scholar
  15. /15/.
    D. Mekki, Thèse 3è cycle, Paris VI (1984)Google Scholar
  16. /16/.
    B.J. Wuensch, Chap. 14, in “Mass Transport in Solids” Ed. F. Benière, C.R.A. Catlow,NATO ASI Séries B.: Physics, Vol. 97 Plenum Press New York and London (1981)Google Scholar
  17. /17/.
    R. Dieckmann, Zeit. Physik. Chem. Neue Folge 107: 189 (1977)CrossRefGoogle Scholar
  18. /18/.
    C. Monty, “Radiation Effects” 74: 29 (1983)CrossRefGoogle Scholar
  19. /19/.
    C. Clauss., R.J. Tarento, C. Monty, A. Dominguez-Rodriguez, J. Castaing, J. Philibert, in. Philibert, in “Transport in nonstoichiometric coumpounds” 3è conf. Penn State Univ. (1984), Ed. G. Simkovich V. Stubican, Plenum Press (1985)Google Scholar
  20. /20/.
    F. Morin., R. Dieckmann, Z. Phys. Chem. 2 (1982)Google Scholar
  21. /21/.
    G. Petot-Ervas, O. Radji, P. Ochin, B. Sosse Radiation Effects 69: 301 (1983)CrossRefGoogle Scholar
  22. /22/.
    A.D. Leclaire, A.B. Lidiard, Phil. Mag. 1: 518 (1976)ADSCrossRefGoogle Scholar
  23. /23/.
    N. Tabet, C. Monty, in “Reactivity of Solids - Cracovie 1980” Ed. Dyrek, Novotny, Haber, Elsevier (1982)Google Scholar
  24. /24/.
    W. Crow, Ph. D. Thesis, Cornell University (1969)Google Scholar
  25. /25/.
    N. Peterson, Solid State Ionics 12: 201 (1984)CrossRefGoogle Scholar
  26. /26/.
    C. Dubois, C. Monty, J. Philibert Phil Mag.A46:419(1982) Solid state Ionics 12: 75 (1985)CrossRefGoogle Scholar
  27. /27/.
    N. Tabet, C. Dolin, C. Monty, Rev. Int. Hautes Temp. Refract. 19: 413–416 (1982)Google Scholar
  28. /28/.
    C. Monty, in “Physical Chemistry of the Solid State: application to Metals and their compounds” Ed. P. Lacombe, Elsevier (1984)Google Scholar
  29. /29/.
    W.K. Chen, N.L. Peterson, J. Phys. Chem. Solids 33: 881 (1972)ADSCrossRefGoogle Scholar
  30. /30/.
    W.K. Chen, N.L. Peterson, J. Phys. Chem. Solids 34: 1093 (1973)ADSCrossRefGoogle Scholar
  31. /31/.
    R. Gomri, H. Boussetta, C. Bahezre, C. Monty Solid State Ionics 12: 227–233 (1984)CrossRefGoogle Scholar
  32. /32/.
    A. Atkinson, F.E.W. Pummery, C. Monty, in “Transport in nonstoichiometric compounds” Penn State Univ. 1984, Ed. G. Simkovich, V. Stubican, Plenum Press (1985)Google Scholar
  33. /33/.
    A. Atkinson, R.I. Taylor, Phil. Mag. A395: 581–595 (1979)CrossRefGoogle Scholar
  34. /34/.
    A.D. Leclaire, A. Rabinovitch, in “Diffusion in crystalline Solids” Ed. G.E. Murch, A.S. Nowick,Academic Press, Orlando, 257–318 (1984)Google Scholar
  35. /35/.
    R.T. Whipple., Phil Mag 45: 1225 (1954)zbMATHGoogle Scholar
  36. /36/.
    R. Suzuoka, Trans. Jap. Inst. Mat. 2: 25 (1961)Google Scholar
  37. /37/.
    A. Atkinson, Solid State Ionics 12: 309–320 (1984)CrossRefGoogle Scholar
  38. /38/.
    L.G. Harrison, Trans. Faraday Soc 57: 1191 (1961)CrossRefGoogle Scholar
  39. /39/.
    A. Atkinson, R.I. Taylor, AERE R 11763 (1985)Google Scholar
  40. /40/.
    W.K. Chen, N.L. Peterson, J. Phys. Chem. Solids 41. Chem. Solids 41:’647 (1980)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Claude Monty
    • 1
  1. 1.C.N.R.S. BellevueMeudonFrance

Personalised recommendations