The Nature of Defects on Solid Surfaces as Studied by Electron Spectroscopy

  • Victor E. Henrich
Part of the NATO ASI Series book series (NSSB)


The study of bulk defects in solids has been an active area of both experimental and theoretical research for many years, and as the other articles in this volume attest, a great deal is known about them and their properties. Our understanding of surface defects on solids is, on the contrary, in its infancy. The whole field of surface science has only blossomed during the last 15–20 years, largely because the experimental techniques necessary for the controlled study of surfaces, including ultrahigh vacuum (UHV), were not previously widely available. With the advent of commercial UHV systems and surface-sensitive electron spectrometers of various types ,a growing segment of the scientific community began trying to unravel the mysteries of the physics and chemistry of surfaces. As with any new field, the logical starting point was the study of simple systems,i.e., nearly perfect single-crystal surfaces. Work on perfect surfaces served as a proving ground for both the new experimental techniques and theoretical approaches. An extremely important aspect of surface science is the interaction of surfaces with adsorbed molecules, and studies in that area also began by using perfect surfaces as substrates.


Point Defect Screw Dislocation Defect Site Electron Energy Loss Spectroscopy Reflection High Energy Electron Diffraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. W. Tasker and D. M. Duffy, The Structure and Properties of the Stepped Surfaces of Mg0 and NM Surf. Sci, 137: 91 (1984).ADSCrossRefGoogle Scholar
  2. 2.
    J. Kendrick, E. A. Colbourn and W, C. Mackrodt, The Calculated Defect Structure of Planar and Non-Planar Surfaces of MgO and Fe0Radiation Effects73: 259 (1983).CrossRefGoogle Scholar
  3. 3.
    E. A. Colbourn and W. C. Mackrodt, A Theoretical Study of CO Chemisorption at (001) Surfaces of Non-Defective and Doped MgO, Surf. Sci. 143: 391 (1984).ADSCrossRefGoogle Scholar
  4. 4.
    R. M. J. Cotterll1 and M. Doyama, Energies and Atomic Configurations of Line Defects and Plane Defects in FCC Metals, in: “Lattice Defects and Their Interactions,” R. R Hasiguti, ed., Gordon and Breach, New York, (1967).Google Scholar
  5. 5.
    For detailed descriptions of the various techniques and their nuances, see “Electron Spectroscopy for Surface Analysis,” H. (back, ed., Springer-Verlag, Berlin (1977).Google Scholar
  6. 6.
    R. B. Doak and J. P. Toennies, Inelastic Molecular Beam Scattering From Solid Surfaces, Surf. Sci. 117: 1 (1982).ADSCrossRefGoogle Scholar
  7. 7.
    G. Blatter and T. M. Rice, Scattering of Atomic Beams Off Stepped Surfaces, Phys. Rev. B. 27: 7050 (1983).ADSCrossRefGoogle Scholar
  8. 8.
    M. Henzler, LEED Investigation of Step Arrays on Cleaved Gerrmantum (111) Surfaces, Surf. Sci. 19: 159 (1970).ADSCrossRefGoogle Scholar
  9. 9.
    D. G. Welkie and M. G. Legally,Analysis of Surface Structural Defects by Low Energy Electron DiffractionThin Soild films93: 219 (1982)ADSCrossRefGoogle Scholar
  10. 10.
    M. Henzler, Measurement of Surface Defects by Low-Energy Electron Diffraction,Appl. Phys. A34: 205 (1984).ADSCrossRefGoogle Scholar
  11. 11.
    L. K. Verheij, J. Lux and B. Poelsema, A New Approach for the Analysis of Diffraction from Randomly Stepped Surfaces, Surf. Sci. 144: 385 (1984).ADSCrossRefGoogle Scholar
  12. 12.
    V. E. Henrich, Thermal Faceting of (110) and (111) Surfaces of Mg0, Surf. Sci. 57: 385 (1976).Google Scholar
  13. 13.
    V. Dose, Ultraviolet Bremsstrehlung Spectroscopy, Prog. Surf. Sel. 13: 225 (1983).ADSCrossRefGoogle Scholar
  14. 14.
    J. B. Pendry, New Probe for Unoccupied Bands at Surfaces, Phys. Rev. Lett. 45: 1356 (1980).ADSCrossRefGoogle Scholar
  15. 15.
    D. P. Woodruff, P. D. Johnson and N.V. Smith, Inverse Photoemission, J. Vac. Scia. Technol. A 1: 1104 (1983).ADSCrossRefGoogle Scholar
  16. 16.
    V. E. Henrich, G. Dresselhaus and H. J. Zeiger, Surface Defects and the Electronic Structure of SrTi3 SurfacesPhys. Rev. B 17: 4908 (1978).Google Scholar
  17. 17.
    G. Binnig, H. Rohrer, Ch. Gerber and E. Weibel, Surface Studies by Scanning Tunneling Microscopy, Phys. Rev, Lett. 49: 57 (1982).ADSCrossRefGoogle Scholar
  18. 18.
    A. M. Baro, G. Binnig, H. Roher, Ch. Gerber, E. Stol 1, A. Baratoff and F. Salvan, Real-Space Observation of the 2 x 1 Structure of Chemisorbed Oxygen on Ni (110) by Scanning Tunneling Microscopy, Phys. Rev. Lett. 52: 1304 (1984).ADSCrossRefGoogle Scholar
  19. 19.
    H. H. Brongersma, Surface Structure Analysis by Ion Scattering, J. Vac. Sci. Technol. 11: 231 (1974).ADSCrossRefGoogle Scholar
  20. 20.
    D. G. Armour, Applications of Ion Scattering in Surface Analysis, Vacuum 31: 417 (1981).ADSCrossRefGoogle Scholar
  21. 21.
    S. B. Luitjens, A. J. Algra, E. P. Th. M. Suurmeijer and A. L. Boers, Argon (10 keV) Scattered from Structures, Induced by Bombarding a Cu (100) Surface: Ionization and Neutralization, Surf. Sci. 100: 315 (1980).Google Scholar
  22. 22.
    J. Lapujoulade, Y. Lejay and N. Papanicolaou, Diffraction of Helium from a Stepped Surface: Cu (117) - An Experimental Study, Surf. Sci. 90: 133 (1979).ADSCrossRefGoogle Scholar
  23. 23.
    G. Comsa, G. Mechtersheimer, B. Poelsema and S. Tomoda, Direct Evidence for Terrace Bending From He Beam Scattering on Pt (997), Surf. Sci. 89: 123 (1979).ADSCrossRefGoogle Scholar
  24. 24.
    J. Harris, A. L i ebsch, G. Coursa, G. Mechtershe l mer, B. Poelsema and S. Tomoda, Refraction Effects in Atom Scattering from Stepped Surfaces, Surf. Sci. 118: 279 (1982).ADSCrossRefGoogle Scholar
  25. 25.
    K. G. Lynn, Slow Positrons in the Study of Surface and Near Surface Defects, Proc. Int. Sch. Phys. “Enrico Fermi,” 609 (1981).Google Scholar
  26. 26.
    G. H. Gilmer and J. D. Weeks, Statistical Properties of Steps on Crystal Surfaces, J. Chem. Phys. 68: 950 (1978).ADSCrossRefGoogle Scholar
  27. 27.
    M.D. Thompson and H. B. Huntington, Adatom Binding at the Surface Ledges of a Jellium Metal, Surf. Sci. 116: 522 (1982).ADSCrossRefGoogle Scholar
  28. 28.
    C. R. A. Cat I ow and W. C. Mackrodt, in: “Computer Simulation of Sol ids,” C. R. A. Cat l ow and W. C. Mackrodt, ed., Springer– Verlag, Berlin (1982).Google Scholar
  29. 29.
    L. L. Kesmodel and L. M. FaiIcov, The Electronic Potential In a Metal Close to a Surface Edge, Solid State Commuri. 15: 1201 (1975).CrossRefGoogle Scholar
  30. 30.
    M C. Desjonqueres and F. Cyrot’Lackmann, On the Local Densities of States on Flat and Stepped Pt SurfacesSolid Sate Commun, 18: 1127 (1976).ADSCrossRefGoogle Scholar
  31. 31.
    K. S. Sohn, D. G. Dempsey, L. Kleinman and G. P. Aiiredge, Electronic Structure of Steps on the (001) Surface of CopperPhys, Rev. B 16: 5367 (1977).ADSCrossRefGoogle Scholar
  32. 32.
    M. Tsukada, H. Adachi and C. Satoko, Theory of Electronic Structure of Oxide Surfaces, Prog. Surf. Lei. 14; 113 (1983).ADSCrossRefGoogle Scholar
  33. 33.
    A. Redondo, W. A. Goddard III and T. C. McGill, Electronic Structure of Steps on Silicon (111) Surfaces from Theoretical Studies of Finite Clusters,Phys. Rev, B24: 6135 (1981).ADSCrossRefGoogle Scholar
  34. 34.
    J, P. Muscat, Embedded Cluster Model Studies of Impurities at Metal Surfaces, Prog. Surf. Sol. 18: 59 (1985).ADSCrossRefGoogle Scholar
  35. 35.
    G. A. Somorjai, R. W. Joyner and 8. Lang, The Reactivity of Low Index [(111) and (100)] and Stepped Platinum Single Crystal Surfaces, Proc. Roy. Soc. Lond. A331: 335 (1972).ADSCrossRefGoogle Scholar
  36. 36.
    R. W. Joyner, B. Lang and G. A. Somorjai, Low Pressure Studies of Dehydrocyclization of N#Heptane on Platinum Crystal Surfaces Using Mass Spectrometry, Auger Electron Spectroscopy and Low Energy Electron Diffraction, J. Catal. 27: 405 (1972).Google Scholar
  37. 37.
    G. A. Somorjai, Catalysis on the Atomic Scale, Catl. Rev. Sci. Eng. 18: 173 (1978).CrossRefGoogle Scholar
  38. 38.
    G. A. Somorjai and F. Zaera, Heterogeneous Catalysis on the Molecular Scale, J. Phys. Chem. 86: 3070 (1982).Google Scholar
  39. R. C. Cinti, T. T. A. Nguyen, Y. Capiomont and S. Kennov, LEED and UPS Study of NI ti (001) Vicinal Surfaces, Surf. Sci. 134: 755 (1983).ADSCrossRefGoogle Scholar
  40. 40.
    J. E. Rowe, S. B. Christman and H. ibach, Photoemission Measurements of Step-Dependent Surface Sites on Cleaved Silicon (111), Phys. Rev, Lett. 34: 874 (1975).ADSCrossRefGoogle Scholar
  41. 41.
    M. Henzler, The Roughness of Cleaved Semiconductor Surfaces, Surf. Sci. 36: 109 (1973).ADSCrossRefGoogle Scholar
  42. 42.
    W. Göpel and G. Neuenfeldt, Debye Temperatures and Step Arrays of ZnO (1010) Surface Determined by LEED, Surf. Sci. 55: 362 (1976).CrossRefGoogle Scholar
  43. 43.
    V. E. Henrich, Ultraviolet Photoemission Studies of Molecular Adsorption on Oxide Surfaces, Prog,Surf. Sci. 9: 143 (1979).ADSCrossRefGoogle Scholar
  44. 44.
    V. E. Henrich and R. L. Kurtz, Surface Electronic Structure of TiO2: Atomic Geometry, Ligand Coordination, and the Effect of Adsorbed Hydrogen, Phys. Rev. B 23: 6280 (1981).ADSCrossRefGoogle Scholar
  45. 45.
    V. E. Henrich, The Nature of Transition-Meta H Oxide Surfaces, Proc. Surf. Sci. 14: 175 (1983).ADSCrossRefGoogle Scholar
  46. 46.
    V. E. Henrich, The Surfaces of Metal Oxides, Rep. Prog. Phys. (in press).Google Scholar
  47. 47.
    E. A. Colbourn and W. C. Mackrodt, Theoretical Aspects of H2 and CO Chemisorption on MgO Surfaces, Surf. Sci. 117: 571 (1982).Google Scholar
  48. 48.
    W. S. Knodle and P. E. Luscher, Recent Developments in Device Fabrication by MBE, Semiconductor International, (Nov., 1980 ).Google Scholar
  49. 49.
    J. M. VanHove, C. S. Lent, P. R. Pukitean P. I. Cohen, Damped Oscillations in Reflection High Energy Electron Diffraction During GaAs MBE, J. Vac. Sci. TechnoI. B1: 741 (1983).Google Scholar
  50. 50.
    H. W. Fink and G. Ehrlich,interaction of Individual Adatoms with Surface StepsForty–third Annual Conference on Physical EletronicsAlbuquerque,NM(June, 1983)(unpublished).Google Scholar
  51. 51.
    J. Küppers, K. Wandelt and G. Ertl, Influence of the Local Surface Structure on the 5p Photoemission of Adsorbed Xenon, Phys. Rev. Lett. 43: 928 (1979).ADSCrossRefGoogle Scholar
  52. 52.
    K. Wandelt, J. Hulse and J. Kippers, Site-Selective Adsorption of Xenon on a Stepped Ru (0001) Surface, Surf. Sct. 104: 212 (1981).ADSCrossRefGoogle Scholar
  53. 53.
    J. M. Blakely and M. Eizenberg, Morphology and Composition of Crystal Surfaces, in: 01The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis,“ D. A. King, ed,, Elsevier, Amsterdam (1981).Google Scholar
  54. 54.
    H. J. Leamy and G. H. Gilmer, The Equilibrium Properties of Crystal Surface Steps, J. Cryst, Growth 24 /25: 499 (1974).ADSCrossRefGoogle Scholar
  55. 55.
    S. Erkoc, M. Tomak and S. Ciraci, Vacancies in a Si (111) Thin Film, Solid State Commun 40:919 (1981)Google Scholar
  56. 56.
    S. A. Pope, M. F. Guest, I. H. Hi ! 1 i er, E. A. Col bourn, W. C. Mackrodt and J. Kendrick, Ab lnitio Study of the Symmetric Reaction Path of H9 with a Surface V Center in Magnesium Oxide, Phvs. Rev B28: 219T (1983).Google Scholar
  57. 57.
    J. M. McKay and V. E. Henrich, Surface Electronic Structure of NiO: Defect States, 02 and H2O Interactions, Phys. Rev8 (in press).Google Scholar
  58. 58.
    V. E. Henrich, G. Dresseihaus and H. J. Zeiger, Observation of Two-dimensional Phases Associated with Defect States on the Surface of Tio2, Phys. Rev, Lett.36: 1335 (1976).ADSCrossRefGoogle Scholar
  59. 59.
    P. R. Underhill and T. E. Gaiion, The Surface Defect Peak in the Electron Energy Loss Spectrum of Mg0 (100),Solid,State Commun, 43: 9 (1982).ADSCrossRefGoogle Scholar
  60. 60.
    A, R. Protheroe, A. Steinbrunn and T. E. Galion, The Electron Energy Loss Spectrum of CaO, J, Phys. C. 15: 4951 (1962).ADSGoogle Scholar
  61. 61.
    A. R. Protheroe, A. Steinbrunn, and T. E. Gai lon, The Electron Energy Loss Spectra of Some Alkaline Earth Oxides, Surf. Sol. 126: 534 (1983).ADSCrossRefGoogle Scholar
  62. 62.
    V. E. Henrich, G. Dresselhaus and H. J. Zeiger, Energy-Dependent Electron-Energy-Loss Spectroscopy: Application to the Surface and Bulk Electronic Structure of MgO, Phys. Rev. 822: 4764 (1980).CrossRefGoogle Scholar
  63. 63.
    V. E. Henrich and R. L. Kurtz, Intrinsic and Defect Surface States on Single-Crystal Metal Oxides,J. Vac. Sci. Technol. 18: 416 (1981).ADSCrossRefGoogle Scholar
  64. 64.
    V. E. Henrich, G. Dresseihaus and H, J. Zeiger, Chemisorbed Phases of 02 on Ti02 and SrTiO3, J. Vac. Sci. Technol. 15: 534 (1978).Google Scholar
  65. 65.
    V. E. Henrich, G. Dresselhaus and H. J. Zeiger,Chemisorbed Phases of H2O on TiO2 and SrTiO3,Solid State Commun 24: 623 (1977).Google Scholar
  66. 66.
    R. L. Kurtz and V. E. Henrich, Surface Electronic Structure of Corundum Transition-Metal Oxides: T1203, Phys. Rev.825: 3563 (1982).ADSCrossRefGoogle Scholar
  67. 67.
    R L. Kurtz and V. E. Henrich, Chemisorption of H2O on the Surface of 1–190–3: Role of d Electrons and Ligand Geometry, Phvs Rev Google Scholar
  68. 68.
    R. L. Kurtz and V. E. Henrich, Surface Electronic Structure and Chemisorption on Corundum Transition-Metal Oxides: V203 Phys. Rev.B28: 6699 (1983).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Victor E. Henrich
    • 1
  1. 1.Applied PhysicsYale UniversityNew HavenUSA

Personalised recommendations