Principles of NMR: Its Uses in Defect Studies

  • J. H. Strange
Part of the NATO ASI Series book series (NSSB)


Nuclear magnetic resonance (NMR) is a well established and powerful technique for the study of molecular motions. In crystalline solids the movement of molecules, particularly the translational motion which results in self-diffusion, frequently occurs by mechanisms involving defects that are present. As discussed elsewhere in this volume, studies of mass transport properties in crystals provide very valuable insight into their defect structure. The various techniques of line-width and relaxation time measurement in NMR can therefore give very useful information which often complements data from other techniques (1). The methods of NMR can tell us about large scale motions, related to radiotracer diffusion and electrical conductivity in ionic crystals. They are also sensitive to localized movement (2,3) such as motion of atoms bound to defects giving information related to that obtained from other techniques such as dielectric relaxation and ionic thermocurrent (ITC). The NMR techniques are also nucleus specific so that we may distinguish which atomic species is mobile and even find out about systems where more than one type of atomic motion exists among the same(chemical) atomic species due, for example, to the existence of inequivalent lattice sites (4). Obvious advantages of NMR are that it can be used to study a very wide range of motional frequencies (see figure 1), so that the one basic technique can be used to study specific elements in a specific sample non-destructively over a very wide temperature (or pressure) range.


Nuclear Magnetic Resonance Transverse Magnetization Free Induction Decay Ionic Solid Exponential Correlation Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.V. Chadwick. This volume: (1985).Google Scholar
  2. 2.
    S.H.N. Wei and D.C. Ailion, Phys.Rev.B. 19: 4470 (1979).ADSCrossRefGoogle Scholar
  3. 3.
    A.F. Aalders, H.G.M. Lochs, A.F.M. Arts and H.W. de Wijn, J.Phys.C: (to be published).Google Scholar
  4. 4.
    G.A. Jaroszkiewicz and J.H. Strange, J.Phys.C. 18: 2331 (1985).ADSCrossRefGoogle Scholar
  5. 5.
    A.V. Chadwick, Int.Rev.Phys.Chem. (to be published)Google Scholar
  6. 6.
    R.J. Booth and B.R. McGarvey, Phys.Rev.B. 21: 1627 (1980).ADSCrossRefGoogle Scholar
  7. 7.
    A. Hartland, Proc.Roy.Soc.A. 304: 361 (1968).ADSCrossRefGoogle Scholar
  8. 8.
    C.P. Slichter, Principles of Magnetic Resonance (Springer-Verlag), (1978).Google Scholar
  9. 9.
    N. Bloembergen, E.M. Purcell and R.V. Pound, Phys.Rev. 73:679 (1948).Google Scholar
  10. 10.
    T.C. Farrar and E.D. Becker, Pulse and Fourier Transform NMR (Academic Press ) (1971).Google Scholar
  11. 11.
    D.C. Ailion, Advances Mag.Res. 5: 177 (1971).CrossRefGoogle Scholar
  12. 12.
    .D.R. Figueroa, A.V. Chadwick and J.H. Strange, J.Phys.C. 11: 55(1978). Google Scholar
  13. 13.
    D.R. Figueroa, J.H. Strange and D Wolfe, Phys.Rev.B. 19: 148 (1979).ADSCrossRefGoogle Scholar
  14. 14.
    C.P. Slichter and D.C. Ailion, Phys. Rev. 135 A: 1099 (1964).Google Scholar
  15. 15.
    J. Jeener and P. Broekaert, Phys.Rev. 157: 232 (1967).ADSCrossRefGoogle Scholar
  16. 16.
    H.Y. Carr and E.M. Purcell, Phys.Rev. 94: 630 (1954).ADSCrossRefGoogle Scholar
  17. 17.
    E.O.Ste,jskal and J.E.Tanner,J.Chem.Phys42:288 (1965).ADSCrossRefGoogle Scholar
  18. 18.
    R.E. Gordon and J.H. Strange,.J.Phys.C. 11: 3213 (1978).ADSGoogle Scholar
  19. 19.
    Kanert and M. Mali, Phys.Lett. 69A: 344 (1979).Google Scholar
  20. 20.
    Kanert and R. Kuchler, Radiation Effects, 73: 37 (1983).CrossRefGoogle Scholar
  21. 21.
    P.M. Richards, Phys.Rev.B. 18: 6358 (1978).ADSCrossRefGoogle Scholar
  22. 22.
    J.M.Chezeau and J.H.Strange,Physics Reports53:1 (1979).ADSCrossRefGoogle Scholar
  23. 23.
    S.M. Ross and J.H. Strange, J.Chem.Phys. 68: 3078 (1978).ADSCrossRefGoogle Scholar
  24. 24.
    S.M. Ross and J.H. Strange, Molec.Phys. 32: 775 (1976).ADSCrossRefGoogle Scholar
  25. 25.
    D. Brinkman, M. Mali, J. Roos, R. Messer and H. Birli, Phys.Rev.B. 26: 4810 (1982).ADSCrossRefGoogle Scholar
  26. 26.
    J,Th.M, De Hosson, O. Kanert and A.W. Sleeswyk, Dislocations in Solids (North Holland) (Ed. F.R.N. Nabarro), Chapter 32 (1983).Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • J. H. Strange
    • 1
  1. 1.Physics LaboratoryUniversity of KentCanterbury, KentUK

Personalised recommendations