Skip to main content

Principles of NMR: Its Uses in Defect Studies

  • Chapter
Defects in Solids

Part of the book series: NATO ASI Series ((NSSB))

Abstract

Nuclear magnetic resonance (NMR) is a well established and powerful technique for the study of molecular motions. In crystalline solids the movement of molecules, particularly the translational motion which results in self-diffusion, frequently occurs by mechanisms involving defects that are present. As discussed elsewhere in this volume, studies of mass transport properties in crystals provide very valuable insight into their defect structure. The various techniques of line-width and relaxation time measurement in NMR can therefore give very useful information which often complements data from other techniques (1). The methods of NMR can tell us about large scale motions, related to radiotracer diffusion and electrical conductivity in ionic crystals. They are also sensitive to localized movement (2,3) such as motion of atoms bound to defects giving information related to that obtained from other techniques such as dielectric relaxation and ionic thermocurrent (ITC). The NMR techniques are also nucleus specific so that we may distinguish which atomic species is mobile and even find out about systems where more than one type of atomic motion exists among the same(chemical) atomic species due, for example, to the existence of inequivalent lattice sites (4). Obvious advantages of NMR are that it can be used to study a very wide range of motional frequencies (see figure 1), so that the one basic technique can be used to study specific elements in a specific sample non-destructively over a very wide temperature (or pressure) range.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.V. Chadwick. This volume: (1985).

    Google Scholar 

  2. S.H.N. Wei and D.C. Ailion, Phys.Rev.B. 19: 4470 (1979).

    Article  ADS  Google Scholar 

  3. A.F. Aalders, H.G.M. Lochs, A.F.M. Arts and H.W. de Wijn, J.Phys.C: (to be published).

    Google Scholar 

  4. G.A. Jaroszkiewicz and J.H. Strange, J.Phys.C. 18: 2331 (1985).

    Article  ADS  Google Scholar 

  5. A.V. Chadwick, Int.Rev.Phys.Chem. (to be published)

    Google Scholar 

  6. R.J. Booth and B.R. McGarvey, Phys.Rev.B. 21: 1627 (1980).

    Article  ADS  Google Scholar 

  7. A. Hartland, Proc.Roy.Soc.A. 304: 361 (1968).

    Article  ADS  Google Scholar 

  8. C.P. Slichter, Principles of Magnetic Resonance (Springer-Verlag), (1978).

    Google Scholar 

  9. N. Bloembergen, E.M. Purcell and R.V. Pound, Phys.Rev. 73:679 (1948).

    Google Scholar 

  10. T.C. Farrar and E.D. Becker, Pulse and Fourier Transform NMR (Academic Press ) (1971).

    Google Scholar 

  11. D.C. Ailion, Advances Mag.Res. 5: 177 (1971).

    Article  Google Scholar 

  12. .D.R. Figueroa, A.V. Chadwick and J.H. Strange, J.Phys.C. 11: 55(1978).

    Google Scholar 

  13. D.R. Figueroa, J.H. Strange and D Wolfe, Phys.Rev.B. 19: 148 (1979).

    Article  ADS  Google Scholar 

  14. C.P. Slichter and D.C. Ailion, Phys. Rev. 135 A: 1099 (1964).

    Google Scholar 

  15. J. Jeener and P. Broekaert, Phys.Rev. 157: 232 (1967).

    Article  ADS  Google Scholar 

  16. H.Y. Carr and E.M. Purcell, Phys.Rev. 94: 630 (1954).

    Article  ADS  Google Scholar 

  17. E.O.Ste,jskal and J.E.Tanner,J.Chem.Phys42:288 (1965).

    Article  ADS  Google Scholar 

  18. R.E. Gordon and J.H. Strange,.J.Phys.C. 11: 3213 (1978).

    ADS  Google Scholar 

  19. Kanert and M. Mali, Phys.Lett. 69A: 344 (1979).

    Google Scholar 

  20. Kanert and R. Kuchler, Radiation Effects, 73: 37 (1983).

    Article  Google Scholar 

  21. P.M. Richards, Phys.Rev.B. 18: 6358 (1978).

    Article  ADS  Google Scholar 

  22. J.M.Chezeau and J.H.Strange,Physics Reports53:1 (1979).

    Article  ADS  Google Scholar 

  23. S.M. Ross and J.H. Strange, J.Chem.Phys. 68: 3078 (1978).

    Article  ADS  Google Scholar 

  24. S.M. Ross and J.H. Strange, Molec.Phys. 32: 775 (1976).

    Article  ADS  Google Scholar 

  25. D. Brinkman, M. Mali, J. Roos, R. Messer and H. Birli, Phys.Rev.B. 26: 4810 (1982).

    Article  ADS  Google Scholar 

  26. J,Th.M, De Hosson, O. Kanert and A.W. Sleeswyk, Dislocations in Solids (North Holland) (Ed. F.R.N. Nabarro), Chapter 32 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Strange, J.H. (1986). Principles of NMR: Its Uses in Defect Studies. In: Chadwick, A.V., Terenzi, M. (eds) Defects in Solids. NATO ASI Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0761-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0761-8_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0763-2

  • Online ISBN: 978-1-4757-0761-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics