Guanidines pp 235-247 | Cite as

Effect of Taurine, Taurocyamine and Anticonvulsants on Dibenzoylguanidine-Induced Convulsions and their Relation to Brain Monoamine Levels in ddY and El Mice

  • Midori Hiramatsu
  • Hideaki Kabuto
  • Akitane Mori

Abstract

It has been reported that taurocyamine (guanidinoethanesulfonate)1, guanidinoacetic acid2, γ-guanidinobutyric acid3, N-acetylarginine4, methylguanidine5 and α-guanidinoglutaric acid6, are present in the mammalian brain and that these guanidino compounds induce violent convulsions after intracisternal injection into rabbits, dogs, cats and rats. N-amidinobenzamide7 and dibenzoylguanidine8, which do not occur naturally, have also been found to induce convulsions after intraperitoneal or intravenous injection into animals. Dibenzoylguanidine is thought to be a very suitable convulsant for the study of the convulsive mechanism, because it can easily pass the blood-brain-barrier and the latent time to induce convulsions is very long.

Keywords

Latent Time Taurine Level Taurine Transport Taurine Content Excitable Tissue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Mizuno, J. Mukawa, K. Kobayashi and A. Mori, Convulsive activity of taurocyamine in cats and rabbits, IRCS Med. Sci., 3:385 (1975).Google Scholar
  2. 2.
    D. Jinnai, A. Mori, J. Mukawa, H. Ohkusu, M. Hosotani, A. Mizuno and L. C. Tye, Biological and physiological studies on guanidino compounds induced convulsion, Jpn. J. Brain Physiol., 106:3668 (1969).Google Scholar
  3. 3.
    D. Jinnai, A. Sawai and A. Mori, y-Guanidinobutyric acid as a convulsive substance, Nature, 212: 617 (1966).PubMedCrossRefGoogle Scholar
  4. 4.
    H. Okusu and A. Mori, Isolation of a-N-acetyl-L-arginine from cattle brain, J. Neurochem., 16:1485 (1969).Google Scholar
  5. 5.
    M. Matsumoto, K. Kobayashi, H. Kishikawa and A. Mori, Convulsive activity of methylguanidine in cats and rabbits, IRCS Med. Sci., 4:65 (1976).Google Scholar
  6. 6.
    A. Mori, Y. Watanabe, S. Shindo, M. Akagi and M. Hiramatsu, a-Guanidinoglutaric acid and epilepsy, in:“Urea Cycle Diseases,” A. Lowenthal, A. Mori and B. Marescau, eds., Plenum Publishing Corporation, New York, (1983).Google Scholar
  7. 7.
    E. Arrigoni-Martelli, A. Garzia and L. Vargin, Attivata’ farmacologiche della benzoilguanidina, Boll. Soc. Ital. Biol. Sper., 38:1421 (1962).Google Scholar
  8. 8.
    I. Nakae, Synthesis of N’N-dibenzoylguanidine and its convulsive action, Neurosciences, 7: 205 (1981).Google Scholar
  9. 9.
    M. Matsumoto, H. Kishikawa and A. Mori, Guanidino compounds in the sera uremic patients and in the sera and brain of experimental uremic rabbits, Biochem. Med., 16:1 (1976).Google Scholar
  10. 10.
    A. Mori, Y. Watanabe and M. Akagi, Guanidino compound anomalies in epilepsy, in:“Advances in Epileptology,” H. Akimoto, H. Kazamatsuri, M. Seino and A. Ward, eds., Raven Press, New York, (1982).Google Scholar
  11. 11.
    C. Hiramatsu, Guanidino compounds in mouse brain II. Guanidino compound levels in brain in relation to convulsions, Okayama-Igakkai-Zasshi, 92: 427 (1980).Google Scholar
  12. 12.
    M. Hiramatsu, H. Niiya-Nishihara and A. Mori, Effect of taurocyamine on taurine and other amino acids in the brain, liver and muscle of mice, Neurosciences, 8: 289 (1982).Google Scholar
  13. 13.
    R. J. Huxtable and S. E. Lippincott, Comparative metabolism and taurine-depleting effects of guanidinoethanesulfonate in cats, mice and guinea pigs, Arch. Biochem. Biophys., 210:698 (1981).Google Scholar
  14. 14.
    M. Hiramatsu, S. Ohara, C. Hiramatsu, K. Nanba and A. Mori, Effects of taurocyamine on motor activity and brain monoamine level of mouse, Sulfur-containing Amino Acids, 2: 79 (1979).Google Scholar
  15. 15.
    J. Glowinski and L. L. Iversen, Regional studies of catecholamines in the rat brain, J. Neurochem., 13:655 (1966).Google Scholar
  16. 16.
    M. Hiramatsu, Brain monoamine levels and El mouse convulsions. Flia Psychiat. Neurol. Jpn., 35:261 (1981).Google Scholar
  17. 17.
    S. W. Schaffer, J. Chovan, J. Kramer and E. Kulakowski, The role of taurine receptors in the heart, in:“The Effects of Taurine on Excitable Tissues,” S. W. Schaffer, S. I. Baskin and J. J. Kacsis, eds., Spectrum Publications, New York, (1981)CrossRefGoogle Scholar
  18. 18.
    R. J. Huxtable, H. E. Laird and S. Lippincott, Rapid depletion of tissue taurine content by guanidinoethylsulfonate, in: “The Effects of Taurine on Excitable Tissues,” S. W. Schaffer, S. I. Baskin and J. J. Kacsis, eds., Spectrum Publications, New York, (1981).Google Scholar
  19. 19.
    H. I. Yamamura, R. C. Speth, R. E. Hruska, N. Bresolin, B. A. Meiners and R. J. Huxtable, Effects of kainic acid lesions of taurine transport into rat brain synaptosomes, in:“The Effects of Taurine on Excitable Tissues,” S. W. Schaffer, S. I. Baskin and J. J. Kicsis, eds., Spectrum Publications, New York, (1981).Google Scholar
  20. 20.
    J. Bahl, C. J. Frangakis, B. Larsen, S. Chang, D. Grosso and R. Bressler, Accumulation of taurine by isolated rat heart cells and rat heart slices, in:“The Effects of Taurine on Excitable Tissues,” S. W. Schaffer, S. I. Baskin and J. H. Kocsis, eds., Spectrum Publications, New York, (1981).Google Scholar
  21. 21.
    K. Okamoto and Y. Sakai, Inhibitory actions of taurocyamine, hypotaurine, homotaurine, taurine and GABA on spike discharges of purkinje cells, and localization of sensitive sites, in guinea-pig cerebellar slices, Brain Res., 206: 371 (1981).Google Scholar
  22. 22.
    S. Shindo, M. Hiramatsu, Y. Katayama, S. Ohara, S. Miyamoto and A. Mori, Distribution and metabolism of 35S-taurocyamine administered to mouse in vivo, Sulfur Amino Acids, 5: 197 (1982).Google Scholar
  23. 23.
    H. Iwata, S. Yamagami, E. Lee, T. Matsuda and A. Baba, Increase of brain taurine contents of El mice by physiological stimulation, Jpn. J. Pharmacol., 29:503 (1979).Google Scholar
  24. 24.
    K. Kobayashi and A. Mori, Brain monoamines in seizure mechanism (Review), Follia Psychiat. Neurol. Jpn., 31:483 31:483 (1977).Google Scholar
  25. 25.
    A. Mori, Clinical biochemistry of epilepsy-Specially regarding to neurotransmitters, No-shinkei, 34: 1129 (1982) (in Japanese).Google Scholar
  26. 26.
    M. Hiramatsu, Brain 5-hydroxytryptamine level, metabolism and binding in El mice, Neurochem. Res., 8:1163 (1983).Google Scholar
  27. 27.
    E. W. Mynert, T. J. Marczynski and R. A. Browing, The role of the neurotransmitters in the epilepsies, Adv. Neurol., 131:79 (1975).Google Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Midori Hiramatsu
    • 1
  • Hideaki Kabuto
    • 1
  • Akitane Mori
    • 1
  1. 1.Department of Neurochemistry, Institute for NeurobiologyOkayama University Medical SchoolOkayama 700Japan

Personalised recommendations