Guanidines pp 227-234 | Cite as

Effects of Guanidinoethane Sulfonate and Taurine on Electroshock Seizures in Mice

  • Kanji Izumi
  • Chikara Kishita
  • Takeshi Koja
  • Takao Shimizu
  • Takeo Fukuda
  • Ryan J. Huxtable


Guanidinoethane sulfonate is a compound which has been recently found to inhibit competitively taurine uptake and thereby decrease the concentration of this amino acid in various organs including the brain in rats1 and mice2,3. Taurine, or 2-aminoethane sulfonate, is an inhibitory amino acid like γ-aminobutyric acid (GABA), glycine or β-alanine in the central nervous system (CNS) and is known to possess antiepileptic properties against various types of experimentally-induced seizures in mammals (for review see Barbeau and Huxtable4, Huxtable5, Durelli and Mutani6). Interference with GABA or glycine system in the CNS by specific receptor blockers such as bicuculline or strychnine causes convulsions7. Decreased GABA content of the brain caused by inhibiting glutamic acid decarboxylase activity also produces convulsions.In this study we investigate whether a selective decrease in the taurine concentration in the brain produced by guanidinoethane sulfonate can increase the susceptibility to electroshock seizures or modify the anticonvulsive action of phenobarbital or phenytoin against maximal electroshock seizures in mice.


Sulfur Amino Acid Maximal Electroshock Seizure Taurine Concentration Taurine Content Taurine Uptake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. R. J. Huxtable, E. Hugh, H. L. Laird, II and S. E. Lippincott, The transport of taurine in the heart and the rapid depletion of tissue taurine content by guanidinoethyl sulfonate, J. Pharmacol. Exp. Ther., 211:465 (1979).PubMedGoogle Scholar
  2. R. J. Huxtable and S. E. Lippincott, Comparative metabolism and taurine-depleting effects of guanidinoethane sulfonate in cats, mice, and guinea pigs, Arch. Biochem. Biophys., 210:698 (1981).PubMedCrossRefGoogle Scholar
  3. 3.
    M. Hiramatsu, H. Niiya and A. Mori, Effects of taurocyamine on taurine and other amino acid in brain, liver and muscle, Sulfur Amino Acids, 4: 227 (1981).Google Scholar
  4. 4.
    A. Barbeau and R. J. Huxtable, “Taurine and Neurological Disorders”, Raven Press, New York (1978).Google Scholar
  5. 5.
    R. J. Huxtable, Insights on function: metabolism and pharmacology of taurine in the brain, in:“The Role of Peptides and Amino Acids as Neurotransmitters,” J. B. Lombardini and A. D. Kenny, eds., Alan R. Liss, Inc., New York (1981).Google Scholar
  6. L. Durelli and R. Mutani, The current status of taurine in epilepsy, Clin. Neuropharmacol., 6:37 (1983).PubMedCrossRefGoogle Scholar
  7. 7.
    D. M. Woodbury, Convulsant drugs: mechanisms of action, in: “Antiepileptic Drugs: Mechanisms of Action,” G. H. Glaser,J. K. Penry and D. M. Woodbury, eds., Raven Press, New York (1980).Google Scholar
  8. M. H. Thursby and A. H. Nevis, Anticonvulsant activity of taurine in electrically and osmotically induced seizures in mice and rats, Fed. Proc., 33:1494 (1974).Google Scholar
  9. W. 0. Boggan, C. Medberry and D. H. Hopkins, Effect of taurine on some pharmacological properties of ethanol, Pharmacol. Biochem. Behay., 9:469 (1978).CrossRefGoogle Scholar
  10. 10.
    R. Oishi, N. Suenaga, T. Hidaka and T. Fukuda, Inhibitory effect of intraspinal injection of 6-hydroxydopamine on the clonic convulsion in maximal electroshock seizure, Brain Res., 169: 189 (1979).Google Scholar
  11. 11.
    E. A. Swinyard, Electrically induced convulsions, in:“Experimental Models of Epilepsy,” D.P. Purpura, J. K. Penry,D. Tower, D. M. Woodbury and R. Walter, eds., Raven Press, New York (1972).Google Scholar
  12. K. Izumi, J. Donaldson, J. Minnich and A. Barbeau, Ouabaininduced seizures in rats: suppressive effects of taurine and GABA, Canad. J. Physiol. Pharmacol., 51:885 (1973).CrossRefGoogle Scholar
  13. 13.
    K. Izumi, H. Igisu and T. Fukuda, Suppression of seizures by taurine-specific or non-specific ?, Brain Res., 76: 171 (1974).PubMedGoogle Scholar
  14. 14.
    K. Izumi, H. Igisu and T. Fukuda, Effects of edetate on seizure suppressing actions of taurine and GABA, Brain Res., 88: 576 (1975).Google Scholar
  15. 15.
    H. Iwata, T. Yamamoto, Y. Kumagae and A. Baba, Further study on cysteine sulfinate-induced EEG seizures in rats, in: “Sulfur Amino Acids: Biochemical and Clinical Aspects,”K. Kuriyama, R. J. Huxtable and H. Iwata, eds., Alan R. Liss, Inc., New York (1983).Google Scholar
  16. 16.
    S. I. Baskin and C. M. Finney, Factors that modify the tissue concentration or metabolism of taurine, in:“The Effects of Taurine on Excitable Tissues,” S. W. Schaffer,S. I. Baskin and J. J. Kocsis, eds., MTP Press, Lancaster (1981).Google Scholar
  17. 17.
    K. Aoki and Y. Kuroiwa, Effect of acute and chronic phenobarbital treatment on GABA and other amino acids contents in seven regions of the rat brain, J. Pharm. Dyn., 5:88 (1982).CrossRefGoogle Scholar
  18. 18.
    H. Iwata, T. Matsuda, S. Yamagami, Y. Hirata and A. Baba, Changes of taurine content in the brain tissue of barbiturate-dependent rats, Biochem. Pharmacol., 27:1955 (1978).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Kanji Izumi
    • 1
  • Chikara Kishita
    • 1
  • Takeshi Koja
    • 1
  • Takao Shimizu
    • 1
  • Takeo Fukuda
    • 1
  • Ryan J. Huxtable
    • 2
  1. 1.Department of Pharmacology, Faculty of MedicineKagoshima UniversityKagoshima 890Japan
  2. 2.Department of Pharmacology, College of Medicine Health Science CenterUniversity of ArizonaTucsonUSA

Personalised recommendations