Advertisement

Guanidines pp 213-225 | Cite as

Taurine and the Actions of Guanidinoethane Sulfonate

  • R. J. Huxtable
  • D. Bonhaus
  • K. Nakagawa
  • H. E. Laird
  • H. Pasantes-Morales

Abstract

It has been recognized that major handicaps to the elucidation of the functional significance of taurine in mammals were the absence of simple methods for depleting tissues of taurine, and the absence of a pharmacological antagonist to taurine1,2. These handicaps have been lessened since the introduction of the structural analogue of taurine, guanidinoethane sulfonate (GES), as a tool for modifying taurine levels in certain species3.

Keywords

Outer Segment Inferior Colliculus Pentylene Tetrazole Taurine Level Taurine Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. J. Huxtable, Does taurine have a function ?, Trends in Pharmacological Sciences 1: 6–7 (1979).Google Scholar
  2. 2.
    R. J. Huxtable, Does taurine have a function ? Introduction, Fed. Proceedings 39:2678–2679 (1980).Google Scholar
  3. 3.
    R. J. Huxtable, H. F. Laird and S. E. Lippincott, The transport of taurine in the heart and the rapid depletion of tissue taurine content by guanidinoethyl sulfonate, J. Pharm. Exp. Therap. 211:465–471 (1979).Google Scholar
  4. 4.
    R. P. Shields and C. K. Whitehair, Muscle creatine: in vivo depletion by feeding ß-guanidinopropionic acid, Can. J. Biochem. 51:1046–1049 (1973).Google Scholar
  5. 5.
    C. D. Fitch, M. Jellinek and E. J. Mueller, Experimental depletion of creatine and phosphocreatine from skeletal muscle, J. Biol. Chem. 249:1060–1063 (1974).Google Scholar
  6. 6.
    R. Huxtable and S. E. Lippincott, Comparative metabolism and taurine depleting effects of guanidinoethane sulfonate in cats, mice and guinea pigs, Arch. Biochem. Biophys. 210:698–709 (1981).Google Scholar
  7. 7.
    J. B. Lombardini, Combined effects of guanidinoethane-sulfonate, a depletor of tissue taurine levels, and isoproterenol or methaxamine on rat tissues, Biochem. Pharmacol. 30:1698–1701 (1981).Google Scholar
  8. 8.
    N. Lake, Depletion of retinal taurine by treatment with guanidinoethyl sulfonate, Life sciences 29: 445–448 (1981).Google Scholar
  9. 9.
    N. Lake, Depletion of taurine in the adult rat retina, Neurochem. Res. 7:1385–1390 (1982).Google Scholar
  10. 10.
    M. C. Welty, J. D. Welty and M. J. McBroom, Effect of isoproterenol and taurine on heart calcium in normal and cardiomyopathic hamsters, J. Mol. Cell. Cardiol. 14:353–358 (1982).Google Scholar
  11. 11.
    S. Y, Schmidt, E. L. Berson and K. C. Hayes, Retinal degeneration in cats fed casein 1. Taurine deficiency, Invest. Ophthalmol. 15:47–52 (1976).Google Scholar
  12. 12.
    R. J. Huxtable, Guanidinoethane sulfonate and the disposition of dietary taurine in the rat, J. Nutrition 12:2293–2300 (1982).Google Scholar
  13. 13.
    A. Mori, Y. Katayama, I. Yokoi and M. Matsumoto, Inhibition of taurocyamine (guanidinotaurine)-induced seizures by taurine, in:“The Effects of Taurine on Excitable Tissue,”S. W. Schaffer, S. I. Baskin and J. J. Kocsis, eds., Spectrum Press, 41–48 (1981).Google Scholar
  14. 14.
    J. A. Sturman, Taurine in nutrition research, in:“Sulfur Amino Acids: Biochemical and Clinical Aspects,” K. Kuriyama, R. J. Huxtable and H. Iwata, eds., A. R. Liss, New York, 281–295 (1981).Google Scholar
  15. 15.
    D. K. Rassin, J. A. Sturman and G. E. Gaull, Taurine and other free amino acids in milk of man and other mammals, Early Human Develop. 2: 1–13 (1978).Google Scholar
  16. 16.
    H. S. Geggel, M. E. Ament, J. R. Hackenlively and J. D. Kopple, Evidence that taurine is an essential amino acid in children receiving total parenteral nutrition,Clin. Res. 30:486a (1982).Google Scholar
  17. 17.
    R. J. Huxtable, Sources and turnover rates of taurine in nursing and weaned rat pups, J. Nutrition 111:1275–1286 (1981).Google Scholar
  18. 18.
    R. J. Huxtable and S. E. Lippincott, Relative contribution of the mother, the nurse and endogenous synthesis to the taurine content of newborn and suckling rat, Nutrition and Metabolism 27: 107–116 (1983).Google Scholar
  19. 19.
    H. Pasantes-Morales, 0. Quesada, A. Carabez and R. J. Huxtable, Effects of the taurine transport antagonists, guanidinoethane sulfonate and -alanine, on the morphology of rat retina, J. Neurosci. Res. 9:135–143 (1983).Google Scholar
  20. 20.
    K. C. Hayes, A. R. Rabin and E. L. Berson, An ultrastructural study of nutritionally induced and reversed retinal degeneration in cats, Am. J. Pathol. 78:505–524 (1975a).Google Scholar
  21. 21.
    K. C. Hayes, R. E. Carey and S. Y. Schmidt, Retinal degeneration associated with taurine dificiency in the cat, Science 188: 949–951 (1975b).Google Scholar
  22. 22.
    A. K. Thakur and L. W. Fezio, A computer program for estimating LD50 and its confidence limits using modified Behrens -Reed-Muench cumuland method, Drug and Chemical Toxicology 4: 297–305 (1981).Google Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • R. J. Huxtable
    • 1
  • D. Bonhaus
    • 1
  • K. Nakagawa
    • 2
  • H. E. Laird
    • 1
  • H. Pasantes-Morales
    • 3
  1. 1.Department of Pharmacology Health Sciences CenterUniversity of ArizonaTucsonUSA
  2. 2.Kyoto’s Women’s CollegeKyotoJapan
  3. 3.Centro de Investigaciones Fisiologia CelularUniversity of MexicoMexico

Personalised recommendations