Exact Results for pp and pp̄ Diffraction Scattering at High Energies

  • A. Martin
Part of the The Subnuclear Series book series (SUS, volume 20)


The CERN colliders offer a unique opportunity to test general consequences of analyticity and unitarity of scattering amplitudes obtained during the period 1960 to 1975, and considered at the time as very remote from experiment. The ISR, allowing a comparison of pp and \(p\bar p\) amplitudes and total cross-sections at energies from 12 + 12 to 31 + 31 GeV makes it possible to test the Pomeranchuck theorem and its generalizations. The SPS collider makes it possible to explore a new range of energies, 540 GeV c.m. (equivalent to 150 000 GeV lab energy) and test asymptotic bounds and high energy models. In fact there is some possibility to run at 400 + 400 GeV equivalent to 340 000 GeV lab energy.


Total Cross Section Elastic Cross Section Absorptive Part Black Disc Geometrical Picture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Martin, Nuovo Cimento 39: 704 (1965).CrossRefGoogle Scholar
  2. 2.
    N.N. Khuri and T. Kinoshita, Phys. Rev. B140: 707 (1965).CrossRefGoogle Scholar
  3. 3.
    J. Fischer, Phys. Reports 76: 157 (1981).CrossRefGoogle Scholar
  4. 4.
    R.J. Eden, Phys. Rev. Lett. 16: 39 (1966);CrossRefGoogle Scholar
  5. T. Kinoshita, in Perspectives in Modern Physics, Ed. R.E. Marshak, Wyley and Sons, New York (1966), p. 211.Google Scholar
  6. 5.
    U. Amaldi et al., Phys. Lett. 62B: 460 (1976).CrossRefGoogle Scholar
  7. 6.
    G. Carboni et al., Phys. Lett. 108B: 87 (1982);CrossRefGoogle Scholar
  8. M. Ambrosio et al., Phys. Lett. 115B: 495 (1982).CrossRefGoogle Scholar
  9. 7.
    D.Favart et al., Phys. Rev. Lett. 44:1191 (1981) and Communication by N. Amos et al., to the XXI International Conference on High Energy Physics, Paris 1982.Google Scholar
  10. 8.
    M. Block and R. Cahn, CERN preprint TH. 3307 (1982).Google Scholar
  11. 9.
    M. Block and R. Cahn, CERN preprint TH. 3342 (1982).Google Scholar
  12. 10.
    A. Martin, Nuovo Cimento 42: 930 (1966).CrossRefGoogle Scholar
  13. 11.
    M. Froissart, Phys. Rev. 123: 1053 (1961).CrossRefGoogle Scholar
  14. 12.
    J. Kupsch, CERN preprint TH.3282 (1982), to appear in Nuovo Cimento.Google Scholar
  15. 13.
    G. Auberson, T. Kinoshita and A. Martin, Phys. Rev. D3: 3185 (1971).Google Scholar
  16. 14.
    See for instance, M. Moshe, Nucl. Phys. B198: 13 (1982).Google Scholar
  17. 15.
    R. Battiston et al., Phys. Lett. 115B:333 (1982) and EP 82–111 (1982), to appear in Phys. Lett.Google Scholar
  18. 16.
    G. Arnison et al., Communication to the XXI International Conference on High Energy Physics, Paris 1982.Google Scholar
  19. 17.
    For more theoretical details, see A. Martin, Zeitschrift für Physik C15: 185 (1982).Google Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • A. Martin
    • 1
  1. 1.CERNGenevaSwitzerland

Personalised recommendations