Biotic Interactions and Siliceous Marine Phytoplankton

An Ecological and Evolutionary Perspective
  • Jennifer A. Kitchell
Part of the Topics in Geobiology book series (TGBI, volume 3)


Unlike most organisms, marine phytoplankton experience nearly deterministic rates of biotic interactions mediated by stochastic rates of turbulence. Yet studies of phytoplankton evolution have largely ignored biotic interactions, whereas studies of phytoplankton ecology have largely ignored evolutionary constraints. This review will attempt to integrate the opposing and complementary selective forces experienced by phytoplankton due to biotic and abiotic parameters over ultimate (evolutionary) and proximate (ecological) time scales. Attention will be focused on biotic interactions experienced by siliceous phytoplankton and the influence of these interactions on coexistence and local extinction (the ecological time framework), and diversification and species selection (the evolutionary time framework). The principal topics of discussion include the significance of biotic interactions among phytoplankton to the mechanisms of species displacement, species coexistence, the maintenance of species diversity, the selection of life history characteristics, and the mode and rate of evolution. A case study developed from a Paleogene phytoplankton assemblage is presented to illustrate that understanding the mechanisms of species interactions is requisite to a comprehensive interpretation of temporal changes in morphology, species dominance, and diversity. [For reviews of the physiology, ultrastructure, and distribution of siliceous marine phytoplankton, the reader is referred to Werner (1977), Bold and Wynne (1978), Morris (1980), Falkowski (1980), and Tappan (1980)].


Fecal Pellet Biotic Interaction Marine Phytoplankton Centric Diatom Character Displacement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alcarez, M., Paffenhöfer, G. A., and Strickler, J. R., 1980, Catching the algae: A first account of visual observations of filter-feeding calanoids, in: Evolution and Ecology of Zooplankton Communities ( W. C. Kerfoot, ed.), pp. 241–248, University Press of New England, Hanover, N.H.Google Scholar
  2. Ambler, J. W., 1979, Effects of diatom species on egg laying rates of Calanus marshallae from the Oregon upwelling zone, Annu. Meet. Limnol. Oceanogr. (abstr.).Google Scholar
  3. Armstrong, R. A., 1980, Zooplankton as algal chemostats: A theoretical perspective, in: Evolution and Ecology of Zooplankton Communities ( W. C. Kerfoot, ed.), pp. 305–311, University Press of New England, Hanover, N.H.Google Scholar
  4. Armstrong, R. A., and McGehee, R., 1976a, Coexistence of two competitors on one resource, J. Theor. Biol. 56: 499–502.PubMedGoogle Scholar
  5. Armstrong, R. A., and McGehee, R., 1976b, Coexistence of species competing for shared resources, Theor. Popul. Biol. 9: 317–328.PubMedGoogle Scholar
  6. Armstrong, R. A., and McGehee, R., 1980, Competitive exclusion, Am. Nat. 115: 151–170.Google Scholar
  7. Arrhenius, G., 1952, Sediment cores from the East Pacific, Swedish Deep-Sea Expedition 1947–1948, Reports 5: 1–91.Google Scholar
  8. Assimacopoulos, D., and Evans, F. J., 1979, A qualitative method for analysis of prey—predatory systems under enrichment, J. Theor. Biol. 80: 467–484.PubMedGoogle Scholar
  9. Barron, J. A., 1981, Late Cenozoic diatom biostratigraphy and paleoceanography of the middle-latitude eastern North Pacific, Deep Sea Drilling Project Leg 63, Init. Rep. Deep Sea Drilling Project 63: 507–538.Google Scholar
  10. Beers, J. R., Stevenson, M. R., Eppley, R. W., and Brooks, E. R., 1971, Plankton populations and upwelling off the coast of Peru, June 1969, Fish. Bull. 69: 859–876.Google Scholar
  11. Beklemishev, C. W., 1959, Sur la colonialite des diatomees planctoniques, Int. Rev. Gesamten Hydrobiol. 44: 11–26.Google Scholar
  12. Belyaeva, T. V., 1972, Distribution of large diatoms in the southeastern Pacific, Oceanology 12: 400–408.Google Scholar
  13. Berger, W. H., 1978, Pelagic sedimentation, pelagic sediments, in: The Encyclopedia of Sedimentology ( R. W. Fairbridge and J. Bourgois, eds.), pp. 544–558, Dowden, Hutchinson and Ross, Stroudsburg, Pa.Google Scholar
  14. Bold, H. C., and Wynne, M. J., 1978, Introduction to the Algae, Prentice—Hall, Englewood Cliffs, N.J.Google Scholar
  15. Bonner, J. T., 1965, Size and Cycle: An Essay on the Structure of Biology, Princeton University Press, Princeton, N.J.Google Scholar
  16. Boyce, M. S., 1979, Seasonality and patterns of natural selection for life histories, Am. Nat. 114: 569–583.Google Scholar
  17. Boyce, M. S., and Daley, D. J., 1980, Population tracking of fluctuating environments and natural selection for tracking ability, Am. Nat. 115: 480–491.Google Scholar
  18. Boyd, C. M., 1976, Selection of particle sizes by filter-feeding copepods: A plea for reason, Limnol. Oceanogr. 21: 175–180.Google Scholar
  19. Brauer, F., 1976, Destabilization of predator—prey systems under enrichment, Int. J. Control 23: 541–552.Google Scholar
  20. Brewster, N. A., 1980, Cenozoic biogenic silica sedimentation in the Antarctic Ocean, Geol. Soc. Am. Bull. 91: 337–347.Google Scholar
  21. Brooks, J. L., 1972, Extinction and the origin of organic diversity, Trans. Conn. Acad. Arts Sci. 44: 19–56.Google Scholar
  22. Brown, W. L., Jr., and Wilson, E. 0., 1956, Character displacement, Syst. Zool. 5: 49–64.Google Scholar
  23. Burckle, L. H., and McLaughlin, R. B., 1977, Size changes in the marine diatom Coscinodiscus nodulifer A. Schmidt in the equatorial Pacific, Micropaleontology 23: 216–222.Google Scholar
  24. Calvert, S. E., 1966, Accumulation of diatomaceous silica in the sediments of the Gulf of California, Geol. Soc. Am. Bull. 77: 569–596.Google Scholar
  25. Carr, T. R., and Kitchell, J. A., 1980, Dynamics of taxonomic diversity, Paleobiology 6: 427443.Google Scholar
  26. Caswell, H., 1972, A simulation study of a time-lag population model, J. Theor. Biol. 34: 419439.Google Scholar
  27. Caswell, H., 1978, Predator-mediated coexistence: A nonequilibrium model, Am. Nat. 112: 127–154.Google Scholar
  28. Chervin, M. B., and Stepien, J. C., 1979, Role of copepods in material cycling in a coastal environment, Annu. Meet. Limnol. Oceanogr. (abstr.).Google Scholar
  29. Connell, J. H., 1970, A predator—prey system in the marine intertidal region. I. Balanus glandula and several predatory species of Thais, Ecol. Monogr. 40: 49–78.Google Scholar
  30. Connell, J. H., 1980, Diversity and the coevolution of competitors, or the ghost of competition past, Oikos 35: 131–138.Google Scholar
  31. Connor, E. F., and Simberloff, D., 1979, The assembly of species communities: Chance or competition?, Ecology 60: 1132–1140.Google Scholar
  32. Conover, R. J., 1956, Biology of Acartia clausi and A. tonsa, Bull. Bingham Oceanogr. Collect. 15: 156–233.Google Scholar
  33. Conover, R. J., 1966, Feeding on large particles by Calanus hyperboreus Kröyer, in: Some Contemporary Studies in Marine Science ( H. Barnes, ed.), pp. 187–194, Allen and Unwin, London.Google Scholar
  34. Conover, R. J., 1978, Transformation of organic matter, in: Marine Ecology IV ( O. Kinne, ed.), pp. 221–500, Wiley, New York.Google Scholar
  35. Cowles, T. J., 1979, The feeding response of copepods from the Peru upwelling system: Food size selection, J. Mar. Res. 37: 601–622.Google Scholar
  36. Cressey, R., and Patterson, C., 1973, Fossil parasitic copepods from a Lower Cretaceous fish, Science 180: 1283–1285.PubMedGoogle Scholar
  37. Crow, J. F., and Kimura, M., 1965, Evolution in sexual and asexual populations, Am. Nat. 99: 439–450.Google Scholar
  38. Crowley. P. H., 1975, National selection and the Michaelis constant, J. Theor. Biol. 50: 461475.Google Scholar
  39. Davis, C. O., Breitner, N. F., and Harrison, P. J., 1978, Continuous culture of marine diatoms under silicon limitation. 3. A model of Si-limited diatom growth, Limnol. Oceanogr. 23: 41–52.Google Scholar
  40. Deason, E. E., 1980, Potential effects of phytoplankton colony breakage on the calculation of zooplankton filtration rates, Mar. Biol. 57: 279–286.Google Scholar
  41. Doyle, R. W., 1975, Upwelling, clone selection, and the characteristic shape of nutrient uptake curves, Limnol. Oceanogr. 20: 487–489.Google Scholar
  42. Drebes, G., 1977, Sexuality, in: The Biology of Diatoms ( D. Werner, ed.), pp. 250–283, University of California Press, Berkeley.Google Scholar
  43. Droop, M. R., 1974, The nutrient status of algal cells in continuous culture, J. Mar. Biol. Assoc. U.K. 54: 825–855.Google Scholar
  44. Dugdale, R. C., 1967, Nutrient limitation in the sea: Dynamics, identification, and significance, Limnol. Oceanogr. 12: 685–695.Google Scholar
  45. Dugdale, R. C., 1977, Modeling, in: The Sea, Vol. 6, Marine Modeling ( E. D. Goldberg, I. N. McCave, J. J. O’Brien, and J. H. Steele, eds.), pp. 789–806, Wiley, New York.Google Scholar
  46. Eldredge, N., 1971, The allopatric model and phylogeny in Paleozoic invertebrates, Evolution 25: 156–167.Google Scholar
  47. Eldredge, N., 1974, Character displacement in evolutionary time, Am. Zoo]. 14: 1083–1097.Google Scholar
  48. Eldredge, N., and Gould, S. J., 1972, Punctuated equilibria: An alternative to phyletic gradualism, in: Models in Paleobiology ( T. J. M. Schopf, ed.), pp. 82–115, Freeman, Cooper, San Francisco.Google Scholar
  49. Eppley, R. W., Rogers, J. N., and McCarthy, J. J., 1969, Half-saturation constants for uptake of nitrate and ammonium by marine phytoplankton, Limnol. Oceanogr. 14: 912–920.Google Scholar
  50. Estrada, M., and Blasco, D., 1979, Two phases of the phytoplankton community in the Baja California upwelling, Limnol. Oceanogr. 24: 1065–1080.Google Scholar
  51. Falkowski, P. G. (ed.), 1980, Primary Productivity in the Sea, Brookhaven Symp. Biol. No. 31.Google Scholar
  52. Fenchel, T., 1974, Intrinsic rate of natural increase: The relationship with body size, Oecologia 14: 317–326.Google Scholar
  53. Fenner, J., Schrader, H. J., and Wienigk, H., 1976, Diatom phytoplankton studies in the southern Pacific, its composition, correlation to the Antarctic convergence and paleoecological significance, Init. Rep. Deep Sea Drilling Project 35: 757–813.Google Scholar
  54. Ferrante, J. G., and Parker, J. I., 1977, Transport of diatom frustules by copepod fecal pellets to the sediments of Lake Michigan, Limnol. Oceanogr. 22: 92–98.Google Scholar
  55. Findlay, I. W. O., 1972, Effect of external factors and cell size on the cell division rate of a marine diatom, Coscinodiscus pavillardii Fott, Int. Rev. Gesamten Hydrobiol. 57: 523533.Google Scholar
  56. Friedman, M. M., 1980, Comparative morphology and functional significance of copepod receptors and oral structures, in: Evolution and Ecology of Zooplankton Communities ( W. C. Kerfoot, ed.), pp. 185–197, University Press of New England, Hanover, N.H.Google Scholar
  57. Friedman, M. M., and Strickler, J. R., 1975, Chemoreceptors and feeding in calanoid copepods (Arthropoda: Crustacea), Proc. Natl. Acad. Sci. USA 72: 4185–4188.PubMedGoogle Scholar
  58. Fritsch, F. E., 1935, The Structure and Reproduction of the Algae, Harvard University Press, Cambridge, Mass.Google Scholar
  59. Frost, B. W., 1972, Effects of size and concentration of food particles on the feeding behavior of the marine planktonic copepod Calanus pacificus, Limnol. Oceanogr. 17: 805–815.Google Scholar
  60. Frost, B. W., 1974, Feeding processes at lower trophic levels in pelagic communities, in: The Biology of the Oceanic Pacific ( C. B. Miller, ed.), pp. 59–77, Oregon State University Press, Corvallis.Google Scholar
  61. Frost, B. W., 1975, A threshold feeding behavior in Calanus pacificus, Limnol. Oceanogr. 20: 263–266.Google Scholar
  62. Frost, B. W., 1977, Feeding behavior of Calanus pacificus in mixtures of food particles, Limnol. Oceanogr. 22: 472–491.Google Scholar
  63. Gause, G. F., 1934, The Struggle for Existence, Hafner, New York.Google Scholar
  64. Gerritsen, J., 1980, Sex and parthenogenesis in sparse populations, Am. Nat. 115: 718742.Google Scholar
  65. Gerritsen, J., and Strickler, J. R., 1977, Encounter probabilities and community structure in zooplankton: A mathematical model, J. Fish. Res. Board Can. 34: 73–82.Google Scholar
  66. Gifford, D. J., Bohrer, R. N., and Boyd, C. M., 1981, Spines on diatoms: Do copepods care?, Limnol. Oceanogr. 26: 1057–1061.Google Scholar
  67. Gilpin, M. E., 1972, Enriched prey–predator systems: Theoretical stability, Science 177: 90 2904.Google Scholar
  68. Glesener, R. R., and Tilman, D., 1978, Sexuality and the components of environmental uncertainty: Clues from geographic parthenogenesis in terrestrial animals, Am. Nat. 112: 659–673.Google Scholar
  69. Goldschmidt, R., 1940, The Material Basis of Evolution, Yale University Press, New Haven, Conn.Google Scholar
  70. Gould, S. J., 1976, Palaeontology plus ecology as palaeobiology, in: Theoretical Ecology: Principles and Applications ( R. M. May, ed.), pp. 218–236, Saunders, Philadelphia.Google Scholar
  71. Gould, S. J., and Calloway, C. B., 1980, Clams and brachiopods—Ships that pass in the night, Paleobiology 6: 383–396.Google Scholar
  72. Gould, S. J., and Eldredge, N., 1977, Punctuated equilibria: The tempo and mode of evolution reconsidered, Paleobiology 3: 115–151.Google Scholar
  73. Green, R. F., 1980, A note on K-selection, Am. Nat. 116: 291–296.Google Scholar
  74. Grenney, W. J., Bella, D. A., and Curl, H. C., Jr., 1973, A theoretical approach to interspecific competition in phytoplankton communities, Am. Nat. 107: 405–425.Google Scholar
  75. Guillard, R. R. L., and Kilham, P., 1977, The ecology of marine planktonic diatoms, in: The Biology of Diatoms ( D. Werner, ed.), pp. 372–469, University of California Press, Berkeley.Google Scholar
  76. Hajos, M., 1975, Late Cretaceous Archaeomonadaceae, Diatomaceae, and Silicoflagellateae from the South Pacific Ocean, Deep Sea Drilling Project, Leg 29, Site 275, Init. Rep. Deep Sea Drilling Project 29: 913–1011.Google Scholar
  77. Hajos, M., 1976, Upper Eocene and Lower Oligocene Diatomaceae, Archaeomonadaceae, and Silicoflagellateae in southwestern Pacific sediments, DSDP Leg 29, Init. Rep. Deep Sea Drilling Project 35: 817–883.Google Scholar
  78. Haq, B. U., 1978, Silicoflagellates and ebridians, in: Introduction to Marine Micropaleontology ( B. U. Haq and A. Boersma, eds.), pp. 267–275, Elsevier, Amsterdam.Google Scholar
  79. Hargrave, B. T., and Geen, G. H., 1970, Effects of copepod grazing on two natural phytoplankton populations, J. Fish. Res. Board Can. 27: 1395–1403.Google Scholar
  80. Harper, M. A., 1977, Movements, in: The Biology of Diatoms ( D. Werner, ed.), pp. 224–249, University of California Press, Berkeley.Google Scholar
  81. Harris, G. P., 1980, Temporal and spatial scales in phytoplankton ecology: Mechanisms, methods, models and management, Can. J. Fish. Aquat. Sci. 37: 877–900.Google Scholar
  82. Harvey, W. H., 1937, Note on selective feeding by Calanus, J. Mar. Biol. Assoc. U.K. 22: 97–100.Google Scholar
  83. Hebert, P. D., and Crease, T. J., 1980, Clonal coexistence in Daphnia pulex (Leydig): Another planktonic paradox, Science 207: 1363–1365.Google Scholar
  84. Hecky, R. E., and Kilham, P., 1974, Environmental control of phytoplankton cell size, Limnol. Oceanogr. 19: 361–366.Google Scholar
  85. Hellebust, J. A., and Lewin, J., 1977, Heterotrophic nutrition, in: The Biology of Diatoms ( D. Werner, ed.), pp. 169–197, University of California Press, Berkeley.Google Scholar
  86. Heron, A. C., 1972, Population ecology of a colonizing species: The pelagic tunicate Thalia democratica, Oecologia (Berlin) 10: 269–312.Google Scholar
  87. Honjo, S., 1978, Sedimentation of materials in the Sargasso Sea at a 5,367 m deep station, J. Mar. Res. 36: 469–492.Google Scholar
  88. Honjo, S., and Roman, M. R., 1978, Marine copepod fecal pellets: Production, preservation and sedimentation, J. Mar. Res. 36: 45–57.Google Scholar
  89. Hulburt, E. M., 1977, Coexistence, equilibrium, and nutrient sharing among phytoplankton species of the Gulf of Maine, Am. Nat. 111: 967–980.Google Scholar
  90. Huston, M., 1979, A general hypothesis of species diversity, Am. Nat. 113:81–101. Hutchinson, G. E., 1961, The paradox of the plankton, Am. Nat. 95: 137–145.Google Scholar
  91. Hutchinson, G. E., 1967, A Treatise on Limnology, Vol. II, Wiley, New York.Google Scholar
  92. Janzen, D. H., 1970, Herbivores and the number of tree species in tropical forests, Am. Nat. 104: 501–528.Google Scholar
  93. Johnson, T. C., 1974, The dissolution of siliceous microfossils in surface sediments of the eastern tropical Pacific, Deep-Sea Res. 21: 851–864.Google Scholar
  94. Kellogg, D. E., 1975, Character displacement in the radiolarian genus, Eucyrtidium, Evolution 29: 736–749.Google Scholar
  95. Kellogg, D. E., 1980, Character displacement and phyletic change in the evolution of the radiolarian subfamily Artiscinae, Micropaleontology 26: 196–210.Google Scholar
  96. Kellogg, T. B., and Truesdale, R. S., 1979, Late Quaternary paleoecology and paleoclimatology of the Ross Sea: The diatom record, Mar. Micropaleontol. 4: 137–158.Google Scholar
  97. Kitchell, J. A., 1979, Paleocene paleoproductivity in the central Arctic: Evidence from siliceous phytoplankton, Geol. Soc. Am. Abstr. 11: 458.Google Scholar
  98. Kitchell, J. A., and Clark, D. L., 1982, Late Cretaceous—Paleogene paleogeography and paleocirculation: Evidence of north polar upwelling, Palaeogeogr. Palaeoclimatol. Palaeoecol. 40: 135–165.Google Scholar
  99. Lam, R. K., and Frost, B. W., 1976, Model of copepod filtering response to changes in size and concentration of food, Limnol. Oceanogr. 21: 490–500.Google Scholar
  100. Lännergren, C., 1979, Buoyancy of natural populations of marine phytoplankton, Mar. Biol. 54: 1–10.Google Scholar
  101. Lawlor, L. R., and Maynard Smith, J., 1976, The coevolution and stability of competing species, Am. Nat. 110: 79–99.Google Scholar
  102. Laws, E. A., 1975, The importance of respiration losses in controlling the size distribution of marine phytoplankton, Ecology 56: 419–426.Google Scholar
  103. Lehman, J. T., 1976, The filter-feeder as an optimal forager, and the predicted shape of feeding curves, Limnol. Oceanogr. 21: 501–516.Google Scholar
  104. Leinen, M., 1977, A normative calculation technique for determining opal in deep-sea sediments, Geochim. Cosmochim. Acta 41: 671–676.Google Scholar
  105. Leinen, M., 1979, Biogenic silica accumulation in the central equatorial Pacific and its implications for Cenozoic paleoceanography, Geol. Soc. Am. Bull. 90: 1310–1376.Google Scholar
  106. Levin, S. A., and Segel, L. A., 1976, Hypothesis for origin of planktonic patchiness, Nature (London) 259: 659.Google Scholar
  107. Levins, R., 1979, Coexistence in a variable environment, Am. Nat. 114: 765–783.Google Scholar
  108. Lipps, J. H., 1969, Ecology and evolution of silicoflagellates, Proc. North Am. Paleontol. Cony. G: 965–993.Google Scholar
  109. Lisitzin, A. P., 1972, Sedimentation in the world ocean, Soc. Econ. Paleontol. Mineral. Spec. Publ. 17: 1–218.Google Scholar
  110. MacArthur, R. H., and Levins, R., 1964, Competition, habitat selection and character displacement in a patchy environment, Proc. Natl. Acad. Sci. USA 51: 1207–1210.PubMedGoogle Scholar
  111. MacArthur, R. H., and Wilson, E. O., 1967, The Theory of Island Biogeography, Princeton University Press, Princeton, N.J.Google Scholar
  112. McGehee, R., and Armstrong, R. A., 1977, Some mathematical problems concerning the ecological principle of competitive exclusion, J. Differential Equations 23: 30–52.Google Scholar
  113. May, R. M., 1972, Limit cycles in predator—prey communities, Science 177:900–902. Maynard Smith, J., 1968, Evolution in sexual and asexual populations, Am. Nat. 102: 469–473.Google Scholar
  114. Maynard Smith, J., 1974, Models in Ecology, Harvard University Press, Cambridge, Mass. Maynard Smith, J., 1978, The Evolution of Sex, Harvard University Press, Cambridge, Mass.Google Scholar
  115. Mayr, E., 1963, Animal Species and Evolution, Harvard University Press, Cambridge, Mass. Menge, B. A., and Sutherland, J. P., 1976, Species diversity gradients: Synthesis of the roles of predation, competition, and temporal heterogeneity, Am. Nat. 110: 351–369.Google Scholar
  116. Mikkelsen, N., 1977, On the origin of Ethmodiscus ooze, Mar. iMicropaleontol. 2: 35–46.Google Scholar
  117. Mills, R. W., 1933–1935, An Index to the Genera and Species of the Diatomaceae and Their Synonyms (1816–1932), Weldon and Wesley, Ltd., London, U.K.Google Scholar
  118. Mimura, M., and Murray, J. D., 1978, On a diffusive prey—predator model which exhibits patchiness, J. Theor. Biol. 75: 249–262.PubMedGoogle Scholar
  119. Morris, I. (ed.), 1980, Physiological Ecology of Phytoplankton, University of California Press, Berkeley.Google Scholar
  120. Mullin, M. M., 1963, Some factors affecting the feeding of marine copepods of the genus Calanus, Limnol. Oceanogr. 8: 239–250.Google Scholar
  121. Munk, W. H., and Riley, G. A., 1952, Adsorption of nutrients by aquatic plants, J. Mar. Res. 11: 215–240.Google Scholar
  122. Murray, D., and Schrader, H., 1980, Size variation of Coscinodiscus nodulifer, Abstracts, Sixth International Symposium on Living and Fossil Diatoms, Budapest.Google Scholar
  123. Nival, P., and Nival, S., 1976, Particle retention efficiencies of an herbivorous copepod Acartia clausi (adult and copepodite stages): Effects on grazing, Limnol. Oceanogr. 21: 24–38.Google Scholar
  124. O’Brien, W. J., 1974, The dynamics of nutrient limitation of phytoplankton algae: A model reconsidered, Ecology 55: 135–141.Google Scholar
  125. O’Connors, H. B., Jr., Biggs, D. C., and Ninivaggi, D. V., 1980, Particle size-dependent maximum grazing rates for Temora longicornis fed natural particle assemblages, Mar. Biol. 56: 65–70.Google Scholar
  126. Paasche, E., 1973, Silicon and the ecology of marine plankton diatoms. II. Silicate-uptake kinetics in five diatom species, Mar. Biol. 19: 262–269.Google Scholar
  127. Paine, R. T., 1966, Food web complexity and species diversity, Am. Nat. 100: 65–75.Google Scholar
  128. Parsons, T. R., and LeBrasseur, R. J., 1970, The availability of food to different trophic levels in the marine food chain, in: Marine Food Chains ( J. H. Steele, ed.), pp. 325–343, University of California Press, Berkeley.Google Scholar
  129. Parsons, T. R., and Takahashi, M., 1973, Environmental control of phytoplankton cell size, Limnol. Oceanogr. 18: 511–515.Google Scholar
  130. Parsons, T. R., and Takahashi, M., 1974, A rebuttal to the comment by Hecky and Kilham, Limnol. Oceanogr. 19: 366–368.Google Scholar
  131. Parsons, T. R., LeBrasseur, R. J., and Fulton, J. D., 1967, Some observations on the dependence of zooplankton grazing on the cell size and concentration of phytoplankton blooms, J. Oceanogr. Soc. Jpn. 23: 10–17.Google Scholar
  132. Parsons, T. R., LeBrasseur, R. J., Fulton, J. D., and Kennedy, O. D., 1969, Production studies in the Strait of Georgia, J. Exp. Mar. Biol. Ecol. 3: 39–50.Google Scholar
  133. Parsons, T. R., Harrison, P. J., and Waters, R., 1978, An experimental simulation of changes in diatom and flagellate blooms, J. Exp. Mar. Biol. Ecol. 32: 285–294.Google Scholar
  134. Perch-Nielsen, K., 1976, New silicoflagellates and a silicoflagellate zonation in north European Palaeocene and Eocene diatomites, Bull. Geol. Soc. Den. 25: 27–40.Google Scholar
  135. Petersen, R., 1975, The paradox of the plankton: An equilibrium hypothesis, Am. Nat. 109: 35–49.Google Scholar
  136. Petipa, T. S., 1959, Feeding of the copepod, Acartia clausi, Giesbr. Tr. Sebastopol Biol. Stn. 11: 72–100.Google Scholar
  137. Petipa, T. S., 1965, The food selectivity of Calanus helgolandicus (Claus), in: Investigation of the Plankton in the Black Sea and Sea of Azov, pp. 100–110, Akad. Sci. Ukr. SSR, Miner. Agric. Fish. Food, Gr. Br. Transi. N.S. 72.Google Scholar
  138. Pianka, E. R., 1970, On r-and K-selection, Am. Nat. 104: 592–597.Google Scholar
  139. Pielou, E. C., 1977, Mathematical Ecology, Wiley, New York.Google Scholar
  140. Pomerantz, M. J., Thomas, W. R., and Gilpin, M. E., 1980, Asymmetrics in population growth regulated by intraspecific competition: Empirical studies and model tests, Oecologia (Berlin) 47: 311–322.Google Scholar
  141. Porter, K. G., 1977, The plant—animal interface in freshwater systems, Am. Sci. 65: 159170.Google Scholar
  142. Porter, K. G., and Robbins, E. I., 1981, Zooplankton fecal pellets link fossil fuel and phosphate deposits, Science 212: 931–933.PubMedGoogle Scholar
  143. Poulet, S. A., 1973, Grazing of Pseudocalanus minutus on naturally occurring particulate matter, Limnol. Oceanogr. 18: 564–573.Google Scholar
  144. Poulet, S. A., 1974, Seasonal grazing of Pseudocalanus minutus on particles, Mar. Biol. 25: 109–123.Google Scholar
  145. Poulet, S. A., 1978, Comparison between five coexisting species of marine copepods feeding on naturally occurring particulate matter, Limnol. Oceanogr. 23: 1126–1143.Google Scholar
  146. Poulet, S. A., and Chanut, J. P., 1975, Nonselective feeding of Pseudocalanus minutus, J. Fish. Res. Board Can. 32: 706–713.Google Scholar
  147. Poulet, S. A., and Marsot, P., 1978, Chemosensory grazing by marine calanoid copepods (Arthropoda: Crustacea), Science 200: 1403–1405.PubMedGoogle Scholar
  148. Poulet, S. A., and Marsot, P., 1980, Chemosensory feeding and food-gathering by omnivorous marine copepods, in: Evolution and Ecology of Zooplankton Communities (W. C. Kerfoot, ad.), pp. 198–218, University Press of New England, Hanover, N.H.Google Scholar
  149. Raup, D. M., 1975, Taxonomic survivorship curves and Van Valen’s law, Paleobiology 1: 82–96.Google Scholar
  150. Rhee, G. Y., 1978, Effects of N:P atomic ratios and nitrate limitation on algal growth, cell composition, and nitrate uptake, Limnol. Oceanogr. 23: 10–25.Google Scholar
  151. Richerson, P., Armstrong, R., and Goldman, C. R., 1970, Contemporaneous disequilibrium, a new hypothesis to explain the “paradox of the plankton,” Proc. Natl. Acad. Sci. USA 67: 1710–1714.PubMedGoogle Scholar
  152. Richman, S., and Rogers, J. N., 1969, The feeding of Calanus helgolandicus on synchronously growing populations of the marine diatom Ditylum brightwellii, Limnol. Oceanogr. 14: 701–709.Google Scholar
  153. Richman, S., Heinle, D. R., and Huff, R., 1977, Grazing by adult estuarine calanoid copepods of the Chesapeake Bay, Mar. Biol. 42: 69–84.Google Scholar
  154. Riedel, W. R., 1963, The preserved record: Paleontology of pelagic sediments, in: The Sea ( M. N. Hill, ed.), pp. 866–887, Interscience, New York.Google Scholar
  155. Rosenzweig, M. L., 1971, Paradox of enrichment: Destabilization of exploitation ecosystems in ecological time, Science 171: 385–387.PubMedGoogle Scholar
  156. Rosenzweig, M. L., and Schaffer, E. M., 1978, Homage to the Red Queen. II. Coevolutionary response to enrichment of exploitation ecosystems, Theor. Popul. Biol. 14: 158–163.PubMedGoogle Scholar
  157. Salthe, S. N., 1975, Some comments on Van Valen’s law of extinction, Paleobiology 1: 356–358.Google Scholar
  158. Sancetta, C., 1979, Oceanography of the North Pacific during the last 18,000 years: Evidence from fossil diatoms, Mar. Micropaleontol. 4: 103–123.Google Scholar
  159. Sancetta, C., 1981, Diatoms as hydrographic tracers: Example from Bering Sea sediments, Science 211: 279–281.Google Scholar
  160. Schindel, D. E., and Gould, S. J., 1977, Biological interaction between fossil species: Character displacement in Bermudian land snails, Paleobiology 3: 259–269.Google Scholar
  161. Schrader, H.-J., 1971, Fecal pellets: Role in sedimentation of pelagic diatoms, Science 174: 55–57.Google Scholar
  162. Schrader, H.-J., and Fenner, J., 1976, Norwegian Sea Cenozoic diatom biostratigraphy and taxonomy, Init. Rep. Deep Sea Drilling Project 38: 921–1098.Google Scholar
  163. Schutt, F., 1892, Das pflanzenleben der Hochsee, Ergeb. Atlant. Ozean Planktonexped. Humboldt-sti ft. 1A: 243–314.Google Scholar
  164. Semina, H. J., 1972, The size of phytoplankton cells in the Pacific Ocean, Int. Rev. Gesamten Hydrobiol. 57: 177–205.Google Scholar
  165. Semina, H. J., Tarkhova, I. A., and Ngoc An, T., 1976, Different patterns of phytoplankton distribution, cell size, species’ composition and abundance, Mar. Biol. 37: 389–395.Google Scholar
  166. Sepkoski, J. J., Jr., 1975, Stratigraphic biases in the analysis of taxonomic survivorship, Paleobiology 1: 343–355.Google Scholar
  167. Silvert, W., and Platt, L., 1980, Dynamic energy-flow model of the particle size distribution in pelagic ecosystems, in: Evolution and Ecology of Zooplankton Communities ( W. C. Kerfoot, ed.), pp. 754–763, University Press of New England, Hanover, N.H.Google Scholar
  168. Simberloff, D., 1980, A succession of paradigms in ecology: Essentialism to materialism to probabilism, Synthese 43: 3–39.Google Scholar
  169. Simpson, G. G., 1944, Tempo and Mode in Evolution, Columbia University Press, New York. Slobodkin, L. B., and Rapoport, A., 1974, An optimal strategy of evolution, Q. Rev. Biol. 49: 181–200.Google Scholar
  170. Small, J., 1946, Quantitative evolution. VIII. Numerical analysis of tables to illustrate the geological history of species number in diatoms, Proc. R. Ir. Acad. Sect. B 51: 53–80.Google Scholar
  171. Small, J., 1948a, Quantitative evolution. IX. Distribution of species-durations, with three laws of organic evolution, Proc. R. Ir. Acad. Sect. B 51: 261–278.Google Scholar
  172. Small, J., 1948b, Quantitative evolution. X. Generic sizes in relation to time and type, Proc. R. Ir. Acad. Sect. B 51: 279–295.Google Scholar
  173. Small, J., 1948c, Quantitative evolution. XII. Frequency-distributions of generic sizes in relation to time, Proc. R. Ir. Acad. Sect. B 51: 311–324.Google Scholar
  174. Small, J., 1949a, Quantitative evolution. XV. Numerical evolution, Acta Biotheor. 9: 1–40.Google Scholar
  175. Small, J., 1949b, Quantitative evolution. XVII. The shape and pattern of evolution, Phyton, Annals rei botanicae, Vol. I, 1949: 269–281.Google Scholar
  176. Small, J., 1950, Quantitative evolution. XVI. Increase of species-numbers in diatoms, Ann. Bot. 14: 91–113.Google Scholar
  177. Smayda, T. J., 1970, The suspension and sinking of phytoplankton in the sea, Oceanogr. Mar. Biol. Annu. Rev. 8: 353–414.Google Scholar
  178. Smayda, T. J., 1971, Normal and accelerated sinking of phytoplankton in the sea, Mar. Geol. 11: 105–122.Google Scholar
  179. Southwood, T. R. E., 1976, Bionomic strategies and population parameters, in: Theoretical Ecology ( R. M. May, ed.), pp. 26–48, Saunders, Philadelphia.Google Scholar
  180. Southwood, T. R. E., May, R. M., Hassel, M. P., and Conway, G. R., 1974, Ecological strategies and population parameters, Am. Nat. 108: 791–804.Google Scholar
  181. Stanley, S. M., 1975, Clades versus clones in evolution: Why we have sex, Science 190: 38 2383.Google Scholar
  182. Stanley, S. M., 1979, Macroevolution: Pattern and Process, Freeman, San Francisco. Stearns, S. C., 1976, Life history tactics: A review of the ideas, Q. Rev. Biol. 51: 3–47.Google Scholar
  183. Stearns, S. C., 1977, The evolution of life history traits: A critique of the theory and a review of the data, Annu. Rev. Ecol. Syst. 8: 145–171.Google Scholar
  184. Stearns, S. C., 1980, A new view of life-history evolution, Oikos 34: 266–281.Google Scholar
  185. Stebbins, G. L., Jr., 1947, Evidence on rates of evolution from the distribution of existing and fossil plant species, Ecol. Monogr. 17: 149–158.Google Scholar
  186. Steele, J. H., 1974, Spatial heterogeneity and population stability, Nature (London) 248: 83.Google Scholar
  187. Stenseth, N. C., 1980, Spatial heterogeneity and population stability: Some evolutionary consequences, Oikos 35: 165–184.Google Scholar
  188. Stewart, F. M., and Levin, B. R., 1973, Partitioning of resources and the outcome of interspecific competition: A model and some general considerations, Am. Nat. 107: 171–198.Google Scholar
  189. Strickler, J. R., and Paffenhöfer, G.-A., 1979, Particle gathering and ingestion by calanoid copepods: A kinematographic study, Annu. Meet., Limnol. Oceanogr. (abstr.). Strong, D. R., Jr., 1980, Null hypotheses in ecology, Synthese 43: 271–285.Google Scholar
  190. Tappan, H., 1969, Microplankton, ecological succession and evolution, Proc. North Am. Paleontol. Cony. H: 1058–1103.Google Scholar
  191. Tappan, H., 1980, The Paleobiology of Plant Protists, Freeman, San Francisco.Google Scholar
  192. Tappan, H., and Loeblich, A. R., Jr., 1970, Geobiologic implications of fossil phytoplankton evolution and time—space distribution, Geol. Soc. Am. Spec. Pap. 127: 247–340.Google Scholar
  193. Tappan, H., and Loeblich, A. R., Jr., 1973, Evolution of the oceanic plankton, Earth-Sci. Rev. 9: 207–240.Google Scholar
  194. Taylor, P. A., and Williams, J. L., 1975, Theoretical studies on the co-existence of competing species under continuous-flow conditions, Can. J. Microbiol. 21: 90–98.PubMedGoogle Scholar
  195. Templeton, A. R., 1979, The unit of selection in Drosophila mercatorium. II. Genetic revolution and the origin of coadapted genomes in parthenogenetic strains, Genetics 92: 1265–1282.PubMedGoogle Scholar
  196. Thomas, W. H., Pollock, M., and Seibert, D. L. R., 1980, Effects of simulated upwelling and oligotrophy on chemostat-grown natural marine phytoplankton assemblages, J. Exp. Mar. Biol. Ecol. 45: 25–36.Google Scholar
  197. Tilman, D., 1977, Resource competition between planktonic algae: An experimental and theoretical approach, Ecology 58: 338–348.Google Scholar
  198. Tilman, D., 1980, Resources: A graphical-mechanistic approach to competition and predation, Am. Nat. 116: 362–393.Google Scholar
  199. Tilman, G. D., 1982, Resource competition and community structure, in: Monographs and Population Biology ( Robert M. May, ed.), Princeton University Press, Princeton, N.J.Google Scholar
  200. Timonin, A. G., 1971, The structure of plankton communities of the Indian Ocean, Mar. Biol. 9: 281–289.Google Scholar
  201. Titman, D., and Kilham, P., 1976, Sinking in freshwater phytoplankton: Some ecological implications of cell nutrient status and physical mixing processes, Limnol. Oceanogr. 21: 409–417.Google Scholar
  202. Truesdale, R. S., and Kellogg, T. B., 1979, Ross Sea diatoms: Modern assemblage distributions and their relationship to ecologic, oceanographic, and sedimentary conditions, Mar. Micropaleontol. 4: 13–31.Google Scholar
  203. Turpin, D. H., and Harrison, P. J., 1979, Limiting nutrient patchiness and its role in phytoplankton ecology, J. Exp. Mar. Biol. Ecol. 39: 151–166.Google Scholar
  204. Turpin, D. H., and Harrison, P. J., 1980, Cell size manipulation in natural marine, planktonic, diatom communities, Can. J. Fish. Aquat. Sci. 37: 1193–1195.Google Scholar
  205. Van Valen, L., 1973, A new evolutionary law, Evol. Theory 1: 1–30.Google Scholar
  206. Van Valkenburg, S. D., 1971a, Observations on the fine structure of Dictyocha fibula Ehrenberg. I. The skeleton, J. Phycol. 7: 113–118.Google Scholar
  207. Van Valkenburg, S. D., 1971b, Observations on the fine structure of Dictyocha fibula Ehrenberg. II. The protoplast, J. Phycol. 7: 118–132.Google Scholar
  208. Van Valkenburg, S. D., and Norris, R. E., 1970, The growth and morphology of the silicoflagellate Dictyocha fibula Ehrenberg in culture, J. Phycol. 6: 48–54.Google Scholar
  209. Volterra, V., 1928, Variations and fluctuations of the number of individuals in animal species living together, J. Cons. Cons. Int. Explor. Mer. 3: 3–51.Google Scholar
  210. Walsh, J. J., 1976, Herbivory as a factor in patterns of nutrient utilization in the sea, Limnol. Oceanogr. 21: 1–13.Google Scholar
  211. Werner, D. (ed.), 1977, The Biology of Diatoms, University of California Press, Berkeley. Whittaker, R. H., Levin, S. A., and Root, R. B., 1973, Niche, habitat, and ecotope, Am. Nat. 107:321–338.Google Scholar
  212. Wilbur, H. M., Tinkle, D. W., and Collins, J. P., 1974, Environmental certainty, trophic level, and resource availability in life history evolution, Am. Nat. 108: 805–817.Google Scholar
  213. Wilson, D. S., 1973, Food size selection among copepods, Ecology 54: 909–914.Google Scholar
  214. Wroblewski, J. S., and O’Brien, J. J., 1976, A spatial model of phytoplankton patchiness, Mar. Biol. 35: 161–175.Google Scholar
  215. Zaret, T. M., 1980, Predation and Freshwater Communities. Yale University Press, New Haven, Conn.Google Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • Jennifer A. Kitchell
    • 1
  1. 1.Department of Geology and GeophysicsUniversity of WisconsinMadisonUSA

Personalised recommendations