Biological Interactions and Precambrian Eukaryotes

  • Andrew H. Knoll
Part of the Topics in Geobiology book series (TGBI, volume 3)


Evidence of Precambrian biotic interactions can be sought in the paleo- cological distribution of ancient microbial fossils. Within Proterozoic stromatolitic microbiotas, for example, discrete recurrent associations of taxa are found, various mat-dwelling microbes often occurring in specific association with a single type of mat builder (Knoll, 1981, 1982). It can be inferred from this that some mat-dweller populations took particular advantage of microenvironments created by the activity of mat-building cyanobacteria, a type of biological interaction analogous to the relationship of reef-dwelling invertebrates to framework builders in the same community. The distribution of microbial mat associations themselves, however, appears to have been in large part physically controlled, with mat communities distributed along environmental gradients in intertidal to shallow subtidal coastal areas. Planktonic microfossils in Late Precambrian sedimentary sequences also exhibit diversity differences between inshore and offshore environments, and again the simplest explanation for their paleoecological distribution involves responses to physical environmental factors, including salinity (Vidal, 1976; Knoll, 1983; Vidal and Knoll, 1983).


Eukaryotic Cell Biological Interaction Eukaryotic Alga Paracoccus Denitrificans Heterotrophic Protist 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altmann, R., 1890, Die Elementarorganismen und ihre Beziehungen zu den Zellen, Veit, Leipzig.Google Scholar
  2. Awramik, S. M., Golubic, S., and Barghoorn, E. S., 1972, Blue-green algal cell degradation and its implication for the fossil record, Geol. Soc. Am. Abstr. Progr. 4 (7): 438.Google Scholar
  3. Barghoorn, E. S., and Schopf, J. W., 1965, Microorganisms from the Late Precambrian of central Australia, Science 150: 337–339.PubMedGoogle Scholar
  4. Bhârâdwâjâ, Y., 1933, False branching and sheath-structure in the Myxophyceae, with special reference to the Scytonemataceae, Arch. Protistenkd. 81: 243–383.Google Scholar
  5. Bird, C. W., Lynch, J. M., Pirt, F. J., Reid, W. W., Brooks, C. J. W., and Middleditch, B. S., 1971, Steroids and squalene in Methylococcus capsulatus grown on methane, Nature (London) 230: 473–474.Google Scholar
  6. Bloeser, B., Schopf, J. W., Horodyski, R. J., and Breed, W. J., 1977, Chitinozoans from the Late Precambrian Chuar Group of the Grand Canyon, Arizona, Science 195: 676–679.PubMedGoogle Scholar
  7. Bonen, L., and Doolittle, W. F., 1975, On the prokaryotic nature of red algal chloroplasts, Proc. Natl. Acad. Sci. USA 72: 2310–2314.PubMedGoogle Scholar
  8. Bos, J. L., Heyting, C., Borst, P., Amberg, A. C., and van Bruggen, E. F. J., 1978, An insert in the single gene for the large ribosomal RNA in yeast mitochondrial DNA, Nature (London) 275: 336–338.Google Scholar
  9. Carlile, M. J., 1980, From prokaryote to eukaryote: Gains and losses, in: The Eukaryotic Microbial Cell, 30th Symposium of the Society for General Microbiology ( G. W. Gooday, D. Lloyd, and A. P. J. Trinci, eds.), pp. 1–40, Cambridge University Press, London.Google Scholar
  10. Cavalier-Smith, T., 1975, The origin of nuclei and of eukaryotic cells, Nature (London) 256: 463–468.Google Scholar
  11. Cavalier-Smith, T., 1978, The evolutionary origin and phylogeny of microtubules, mitotic spindles and eukaryotic flagella, BioSystems 10: 93–114.PubMedGoogle Scholar
  12. Cloud, P. E., 1976, Beginnings of biospheric evolution and their biogeochemical consequences, Paleobiology 2: 351–387.Google Scholar
  13. Crotty, W. J., and Ledbetter, M. C., 1973, Membrane continuities involving chloroplasts and other organelles in plant cells, Science 182: 839–841.PubMedGoogle Scholar
  14. Darnell, J. E., Jr., 1978, Implications of RNA—RNA splicing in evolution of eukaryotic cells, Science 202: 1257–1260.PubMedGoogle Scholar
  15. Dayhoff, M. O., and Schwartz, R. M., 1981, Evidence on the origin of eukaryotic mitochondria from protein and nucleic acid sequences, Ann. N.Y. Acad. Sci. 361: 92–104.PubMedGoogle Scholar
  16. Demoulin, V., 1979, Protein and nucleic acid sequence data and phylogeny, Science 205: 1036–1038.PubMedGoogle Scholar
  17. Diver, W. L., and Peat, C. J., 1980, On the nature of the cryptarchs, Abstr. 5th Int. Palynol. Conf., Cambridge, p. 114.Google Scholar
  18. Dodge, J. C., and Vickerman, K., 1980, Mitosis and meiosis: Nuclear division mechanisms, in: The Eukaryotic Microbial Cell, 30th Symposium of the Society for General Microbiology ( G. W. Gooday, D. Lloyd, and A. P. J. Trinci, eds.), pp. 77–102, Cambridge University Press, London.Google Scholar
  19. Doolittle, W. F., 1978, Genes in pieces: Were they ever together?, Nature (London) 272: 581–582.Google Scholar
  20. Doolittle, W. F., and Bonen, L., 1981, Molecular sequence data indicating an endosymbiotic origin for plastids, Ann. N.Y. Acad. Sci. 361: 248–259.PubMedGoogle Scholar
  21. Evitt, W. R., 1963, A discussion and proposals concerning fossil dinoflagellates, hystrichospheres and acritarchs. II, Proc. Natl. Acad. Sci. USA 49: 298–302.PubMedGoogle Scholar
  22. Ewetz, C. E., 1933, Einige neue Fossilfunde in der Visingsö Formationen, Geol. Foeren. Stockholm Foerh. 55: 506–518.Google Scholar
  23. Fox, G. E., and Woese, C. R., 1975. The architecture of 5S rRNA and its relation to function, J. Mol. Evol. 6: 61–76.Google Scholar
  24. Fox, G. E., Stackebrandt, E., Hespell, R. B., Gibson, J., Maniloff, J., Dyer, T. A., Wolfe, R. S., Balch, W. E., Tanner, R. S., Magrum, L. J., Zablen, L. B., Blakemore, R., Gupta, R., Bonen, L., Lewis, B. J., Stahl, D. A.. Luehrsen, K. R., Chen, K. N., and Woese, C. R., 1980, The phylogeny of prokaryotes. Science 209: 457–463.PubMedGoogle Scholar
  25. Francis, S., Margulis, L., and Barghoorn, E. S., 1978a, On the experimental silicification of microorganisms. II. On the time of appearance of eukaryotic organisms in the fossil record, Precambrian Res. 6: 65–100.Google Scholar
  26. Francis, S., Margulis, L., and Barghoorn, 19786, On the experimental silicification of microorganisms. III. Implications of the preservation of the green prokaryotic alga Prochloron and other coccoids for interpretation of the microbial fossil record, Precambrian Res. 7: 377–383.Google Scholar
  27. Frederick, J. F. (ed.), 1981, Origins and Evolution of Eukaryotic Intracellular Organelles, Ann. N.Y. Acad. Sci. 361.Google Scholar
  28. Fritsch, F. E., 1945 (reprinted 1965), The Structure and Reproduction of the Algae, Vol. II, Cambridge University Press, London.Google Scholar
  29. Galper, J. E., and Darnell, J. E., 1969, The presence of N-formylmethionyl-tRNA in HeLa cell mitochondria, Biochem. Biophys. Res. Commun. 34: 205–214.Google Scholar
  30. Geitler, L., 1932, Cyanophyceae, Rabenhorst’s Kryptogamen-Flora 14, Akademische Verlagsgesellschaft, Leipzig.Google Scholar
  31. Gibbs, S. P., 1981, The chloroplasts of some algal groups may have evolved from endosymbiotic eukaryotic algae, Ann. N.Y. Acad. Sci. 361: 193–208.PubMedGoogle Scholar
  32. Gillham, N. W., and Boynton, J. E., 1981, Evolution of organelle genomes and protein-synthesizing system, Ann. N.Y. Acad. Sci. 361: 20–43.PubMedGoogle Scholar
  33. Gillott, M. A., and Gibbs, S. P., 1980, The cryptomonad nucleomorph: Its ultrastructure and evolutionary significance, J. Phycol. 16: 558–568.Google Scholar
  34. Glaessner, M. F., 1979, Precambrian, in: Treatise on Invertebrate Paleontology, Part A, Introduction ( R. A. Robison and C. Teichert, eds.), pp. 79–118, Geological Society of America and University of Kansas, Lawrence.Google Scholar
  35. Gnilovskaya, M. B., 1971, Ancient aquatic plants of the Vendian from the Russian Platform (latest Precambrian), Paleontol. J. 3: 101–107 (in Russian).Google Scholar
  36. Golubic, S., and Barghoorn, E. S., 1977, Interpretation of microbial fossils with special reference to the Precambrian, in: Fossil Algae ( E. Flügel, ed.), pp. 1–14, Springer-Verlag, Berlin.Google Scholar
  37. Goodenough, U. A., and Levine, R. P., 1970, The genetic activity of mitochondria and chloroplasts, Sci. Am. 223: 22–29.Google Scholar
  38. Gray, M. W., and Doolittle, W. F., 1982, Has the endosymbiont hypothesis been proven?, Microbial. Rev. 46: 1–42.Google Scholar
  39. Heyting, C., Meijlink, F. C. P. W., Verbeet, M. P., Sanders, J. P. M., Bos, J. L., and Borst, P., 1979, Fine structure of the 21S ribosomal RNA region on yeast mitochondrial DNA. I. Construction of the physical map and location of the cistron for the 21A mitochondrial ribosomal RNA, Mol. Gen. Genet. 168: 231–250.Google Scholar
  40. Hofmann, H. J., 1976, Precambrian microflora, Belcher Islands, Canada: Significance and systematics, J. Paleontol. 50: 1040–1073.Google Scholar
  41. Hofmann, H. J., and Aitken, J. D., 1979, Precambrian biota from the Little Dal Group, Mack- enzie Mountains, northwestern Canada, Can. J. Earth Sci. 16: 150–166.Google Scholar
  42. Hori, H., and Osawa, S., 1979, Evolutionary change in 5S RNA secondary structure and a phylogenetic tree of 54 5S RNA species, Proc. Natl. Acad. Sci. USA, 76: 381–385.PubMedGoogle Scholar
  43. Horodyski, R. J., 1980, Middle Proterozoic shale-facies microbiota from the lower Belt Su-pergroup, Little Belt Mountains, Montana, J. Paleontol. 54: 649–663.Google Scholar
  44. Jeon, K. W., and Jean, M. S., 1976, Endosymbiosis in Amoebae: Recently established endosymbionts have become required cytoplasmic components, J. Cell. Physiol. 89: 337–344.Google Scholar
  45. John, P., and Whatley, F. R., 1975, Paracoccus denitrificans and the evolutionary origin of the mitochondrion, Nature (London) 254: 495–498.Google Scholar
  46. Klein, R., and Cronquist, A., 1967, A consideration of the evolutionary and taxonomic sig-nificance of some biochemical, micromorphological and physiological characters in the thallophytes, Q. Rev. Biol. 42: 105–296.Google Scholar
  47. Knoll, A. H., 1981, Paleoecology of Late Precambrian microbial assemblages, in: Paleobotany, Paleoecology, and Evolution ( K. Niklas, ed.), Vol. I, pp. 17–54, Praeger, New YorkGoogle Scholar
  48. Knoll, A. H., 1982, Microorganisms from the Late Precambrian Draken Conglomerate, Ny Friesland, Svalbard, J. Paleontol. 56: 755–790.Google Scholar
  49. Knoll, A. H., 1983, Microbiotas of the Late Precambrian Hunnberg Formation, Nordaustlandet, Svalbard, J. Paleontol., in press.Google Scholar
  50. Knoll, A. H., and Awramik, S. M., 1983, Ancient microbial ecosystems, in: Microbial Geochemistry (W. Krumbein, ed.), pp. Blackwell, Oxford, in press.Google Scholar
  51. Knoll, A. H., and Barghoorn, E. S., 1975, Precambrian eukaryotic organisms: A reassessment of the evidence, Science 190: 52–54.Google Scholar
  52. Knoll, A. H., and Golubic, S., 1979, Anatomy and taphonomy of a Precambrian algal stromatolite, Precambrian Res. 10: 115–151.Google Scholar
  53. Knoll, A. H., and Vidal, G., 1980, Late Proterozoic vase-shaped microfossils from the Visingsö Beds, Sweden, Geol. Foeren. Stockholm Foerh. 102: 207–211.Google Scholar
  54. Knoll, A. H., Barghoorn, E. S., and Awramik, S. M., 1978, New microorganisms from the Aphebian Gunflint Iron Formation, Ontario, J. Paleontol. 52: 976–992.Google Scholar
  55. Krumbein, W. (ed.), 1983, Microbial Geochemistry, Blackwell, Oxford.Google Scholar
  56. Küntzel, H., 1969, Mitochondrial and cytoplasmic ribosomes from Neurospora crossa: Characterization of their subunits, J. Mol. Biol. 40: 315–320.PubMedGoogle Scholar
  57. Leibowitz, P. J., and Schaechter, M., 1975, The attachment of the bacterial chromosome to the cell surface, Int. Rev. Cytol. 41: 1–28.Google Scholar
  58. Lewin, R. A., 1980, Prochlorophytes, in: The Prokaryotes ( M. P. Starr, H. Stolp, H. G. Trueper, A. Ballows, and H. G. Schlegel, eds.), Springer-Verlag, Berlin.Google Scholar
  59. Lewin, R. A., 1981, Prochloron and the theory of symbiogenesis, Ann. N.Y. Acad. Sci. 361: 325-329.PubMedGoogle Scholar
  60. Licari, G. L., 1978, Biogeology of the Late Pre-Phanerozoic Beck Spring Dolomite of eastern California, J. Paleontol. 52: 767–792.Google Scholar
  61. Lloyd, D., and Turner, G., 1980, Structure, function, biogenesis, and genetics of mitochondria, in: The Eukaryotic Microbial Cell, 30th Symposium of the Society for General Microbiology ( G. W. Gooday, D. Lloyd, and A. P. J. Trinci, eds.), pp. 143–181, Cambridge University Press, London.Google Scholar
  62. Lorch, I. J., and Jeon, K. W., 1981, Rapid induction of cellular strain specificity by newly acquired cytoplasmic components in amoebas, Science 211: 949–951.PubMedGoogle Scholar
  63. Margulis, L., 1970, Origin of Eukaryotic Cells, Yale University Press, New Haven, Conn.Google Scholar
  64. Margulis, L., 1975, Genetic and evolutionary consequences of symbiosis, Exp. Parasitol. 39: 277–349.Google Scholar
  65. Margulis, L., 1981, Symbiosis and Cell Evolution, Freeman, San Francisco.Google Scholar
  66. Margulis, L., and Lovelock, J. E., 1978, The biota as ancient and modern modulator of the earth’s atmosphere, Pure Appl. Geophys. 116: 239–243.Google Scholar
  67. Margulis, L., Chase, D., and To, L. P., 1979, Possible evolutionary significance of spirochaetes, Proc. R. Soc. London Ser. B 204: 189–198.Google Scholar
  68. Mereschkowsky, C., 1905, Über Natur und Ursprung der Chromatophoren im Pflanzen reiche, Biol. Centr. 25 (18): 593–604.Google Scholar
  69. Mereschkowsky, C., 1910, Theorie der Zwei Plasmaarten als Grundlage der Symbiogenesis, einer neuen Lehre von der Entstehung der Organismen, Biol. Centr. 30: 278–353Google Scholar
  70. Mereschkowsky, C., 1920, La plante considerée comme un complex symbiotique, Bull. Soc. Sci. Nat. Ouest Fr. 6 (3): 17–21.Google Scholar
  71. Müller, M., 1980, The hydrogenosome, in: The Eukaryotic Microbial Cell, 30th Symposium of the Society for General Microbiology ( G. W. Gooday, D. Lloyd, and A. P. J. Trinci, eds.), pp. 127–142, Cambridge University Press, London.Google Scholar
  72. Oehler, D. Z., 1977, Pyrenoid-like structures in Late Precambrian algae from the Bitter Springs Formation of Australia, J. Paleontol. 51: 885–901.Google Scholar
  73. Oehler, J. H., 1977, Microflora of the H.Y.C. Pyritic Shale Member of the Barney Creek Formation (McArthur Group), Middle Proterozoic of northern Australia, Alcheringa 1: 315–349.Google Scholar
  74. Oehler, J. H., Oehler, D. Z., and Muir, M. D., 1976, On the significance of tetrahedral tetrads of Precambrian algal cells, Origins Life 7: 259–267.Google Scholar
  75. Parsons, D. F., and Yano, Y., 1967, The cholesterol content of the inner and outer membranes of guinea-pig liver mitochondria, Biochim. Biophys. Acta 135: 362.Google Scholar
  76. Peat, C. J., Muir, M. D., Plumb, K. A., McKirdy, D. M., and Norvick, M. S., 1978, Proterozoic microfossils from the Roper Group, Northern Territory, Australia, BMR J. Aust. Geol. Geophys. 3: 1–17.Google Scholar
  77. Phillips, D. O., and Carr, N. G., 1977, Nucleic acid analysis and the endosymbiotic hypothesis, Taxon 26: 3–42.Google Scholar
  78. Raven, P. H., 1970, A multiple origin for plastids and mitochondria, Science 169: 641–646PubMedGoogle Scholar
  79. Reid, P. L., and John, A. W. G., 1980, A possible relationship between Chitinozoa and Tintinnids, Abstr. 5th Int. Palynol. Conf., Cambridge, U.K. p. 332.Google Scholar
  80. Rifkin, M. R., Wood, D. D., and Luck, D. J. L., 1967, Ribosomal RNA and ribosomes from mitochondria of Neurospora crossa, Proc. Natl. Acad. Sci. USA 58: 1025–1032.Google Scholar
  81. Robertson, J. D., 1962, The membrane of the living cell, Sci. Am. 151 (1): 3–10.Google Scholar
  82. Robertson, J. D., 1964, Unit membranes: A review with recent new studies of experimental alterations and a new subunit structure in synaptic membranes, in: Cellular Membranes and Development, 22nd Symposium of the Society for the Study of Development and Growth ( M. Locke, ed.), pp. 1–81, Academic Press, New York.Google Scholar
  83. Sagan, L., 1967, The origin of mitosing cells, J. Theor. Biol. 14: 225–274.Google Scholar
  84. Schimper, A. F. W., 1883, Über die Entwicklung der Chlorophyllkorner und Färbkorner (I. Teil), Bot. Z. 41: 105–114.Google Scholar
  85. Schnepf, E., and Brown, R. M., Jr., 1971, On the relationships between endosymbiosis and the origin of plastids and mitochondria, in: Origin and Continuity of Cell Organelles ( J. Reinert and H. Ursprung, eds.), pp. 299–322, Springer-Verlag, Berlin.Google Scholar
  86. Schopf, J. W., 1968, Microflora of the Bitter Springs Formation, Late Precambrian, central Australia, J. Paleontol. 42: 651–688.Google Scholar
  87. Schopf, J. W., 1975, Precambrian paleobiology: Problems and perspectives, Annu. Rev. Earth Planet. Sci. 3: 213–249.Google Scholar
  88. Schopf, J. W., 1977, Biostratigraphic usefulness of stromatolitic Precambrian microbiotas: A preliminary analysis, Precambrian Res. 5: 143–173.Google Scholar
  89. Schopf, J. W., 1978, The evolution of the earliest cells, Sci. Am. 239 (3): 110–138.Google Scholar
  90. Schopf, J. W., and Blacic, J. M., 1971, New micorroganisms from the Bitter Springs Formation (Late Precambrian) of the north-central Amadeus Basin, Australia, J. Paleontol. 45: 925–960.Google Scholar
  91. Schopf, J. W., and Oehler, D. Z., 1976, How old are the eukaryotes?, Science 193: 47–49PubMedGoogle Scholar
  92. Schopf, J. W., and Prasad, K. N., 1978, Microfossils in Collenia-like stromatolites from the Proterozoic Vempalle Formation of the Cuddapah Basin, India, Precambrian Res. 6: 347–366.Google Scholar
  93. Schopf, J. W., Dolnik, T. A., Krylov, I. N., Mendelson, C. V., Nazarov, B. B., Nyberg, A. V., Sovietov, Y. K., and Yaslin, M. S., 1977, Six new stromatolitic microbiotas from the Proterozoic of the Soviet Union, Precambrian Res. 4: 269–284.Google Scholar
  94. Schwartz, R. M., and Dayhoff, M. O., 1978, Origins of prokaryotes, eukaryotes, mitochondria, and chloroplaste, Science 199: 395–403.PubMedGoogle Scholar
  95. Schwartz, R. M., and Dayhoff, M. O., 1979, Protein and nucleic acid sequence data and phylogeny [reply], Science 205: 1038–1039.PubMedGoogle Scholar
  96. Searcy, D. G., Stein, D. B., and Green, G. R., 1978, Phylogenetic affinities between eukaryotic cells and a thermophilic mycoplasma, BioSystems 10: 19–28.PubMedGoogle Scholar
  97. Searcy, D. G., Stein, D. B., and Searcy, K. B., 1981, A mycoplasma-like archaebacterium possibly related to the nucleus and cytoplasm of eukaryotic cells, Ann. N.Y. Acad. Sci. 361: 312–324.PubMedGoogle Scholar
  98. Seewaldt, E., and Stackebrandt, E., 1982, Partial sequence of 16S ribosomal RNA and the phylogeny of Prochloron, Nature (London) 295: 618–620.Google Scholar
  99. Smith, A. E., and Marcker, K. A., 1968, N-Formylmethionyl transfer RNA in mitochondria from yeast and rat liver, J. Mol. Biol. 38: 241–243.PubMedGoogle Scholar
  100. Stanier, R. Y., 1970, Some aspects of the biology of cells and their possible evolutionary significance, in: Organization and Control in Prokaryotic and Eukaryotic Cells, Twentieth Symposium of the Society for General Microbiology ( H. P. Charles and B. D. Knight, eds.), pp. 1–38, Cambridge University Press, London.Google Scholar
  101. Stanier, R. Y., 1974, The origins of photosynthesis in eukaryotes, in: Evolution in the Microbial World, Twenty-fourth Symposium of the Society for General Microbiology ( M. J. Carlile and J. J. Skehel, eds.), pp. 219–240, Cambridge University Press, London.Google Scholar
  102. Stanley, S. M., 1976, Fossil data and the Precambrian–Cambrian evolutionary transition, Am. J. Sci. 276: 56–76.Google Scholar
  103. Taylor, F. J. R., 1974, Implications and extensions of the serial endosymbiosis theory of the origin of eukaryotes, Taxon 23: 229–258.Google Scholar
  104. Taylor, F. J. R., 1976, Autogenous theories for the origin of eukaryotes, Taxon 25: 377–390.Google Scholar
  105. Taylor, F. J. R., 1979, Symbioticism revisited: A discussion of the evolutionary impact of intracellular symbioses, Proc. R. Soc. London Ser. B 204: 267–286.Google Scholar
  106. Taylor, T. N., 1981, Paleobotany, McGraw–Hill, New York.Google Scholar
  107. Thomas, L., 1979, The Medusa and the Snail, p. 13, Viking Press, New York.Google Scholar
  108. Timofeev, B. V., 1959, The ancient flora of the Baltic regions and its stratigraphic significance, Trudy Vses. Nauchno-Issled. Geol. Inst. 129: 1–320.Google Scholar
  109. Uzzell, T., and Spolsky, C., 1981, Two data sets: Alternative explanations and interpretations, Ann. N.Y. Acad. Sci. 361: 481–499.PubMedGoogle Scholar
  110. Van Valen, L. M., and Maiorana, V. C., 1980, The Archaebacteria and eukaryotic origins, Nature (London) 287: 248–250.Google Scholar
  111. Vidal, G., 1976, Late Precambrian microfossils from the Visingsö Beds in southern Sweden, Fossils Strata 9: 1–57.Google Scholar
  112. Vidal, G., 1981, Micropaleontology and biostratigraphy of the Upper Proterozoic and Lower Cambrian sequence in East Finmark, northern Norway, Norg. Geol. Unders. Publ. 362: 153.Google Scholar
  113. Vidal, G., and Knoll, A. H., 1982a, Radiations and extinctions of plankton in the Late Precambrian and Early Cambrian, Nature (London) 297: 57–60.Google Scholar
  114. Vidal, G., and Knoll, A. H., 1983, Proterozoic plankton, Geol. Soc. Am. Mem., in press.Google Scholar
  115. Walter, M. R., Oehler, J. H., and Oehler, D. Z., 1976, Megascopic algae 1300 million years old from the Belt Supergroup, Montana: A reinterpretation of Walcott’s Helminthoid-ichnites, J. Paleontol. 50:872–881.Google Scholar
  116. Whaley, W. G., Dauwalder, M., and Kephart, J. E., 1971, Assembly, continuity, and exchanges in certain cytoplasmic membrane systems, in: Origin and Continuity of Cell Organelles ( J. Reinert and H. Ursprung, eds.), pp. 1–45, Springer-Verlag, Berlin.Google Scholar
  117. Whatley, F. R., 1981, The establishment of mitochondria: Paracoccus and Rhodopseudomonas, Ann. N.Y. Acad. Sci. 361: 330–340.PubMedGoogle Scholar
  118. Whatley, J. M., 1981, Chloroplast evolution—Ancient and modern, Ann. N.Y. Acad. Sci. 361: 154–165.PubMedGoogle Scholar
  119. Whatley, J. M., and Whatley, F. R., 1981, Chloroplast evolution, New Phytol. 87: 233–247.Google Scholar
  120. Whatley, J. M., John, P., and Whatley, F. R., 1979, From extracellular to intracellular: The establishment of mitochondria and chloroplasts, Proc. R. Soc. London Ser. B 204: 165–187.Google Scholar
  121. Whitton, B. A., Carr, N. G., and Craig, I. W., 1971, A comparison of the fine structure and nucleic acid biochemistry of chloroplasts and blue-green algae, Protoplasma 72: 325–357.PubMedGoogle Scholar
  122. Woese, C. R., and Fox. G. E., 1977, Phylogenetic structure of the prokaryotic domain: The primary kingdoms, Proc. Natl. Acad. Sci. USA 74: 5088–5090.PubMedGoogle Scholar
  123. Woese, C. R., and Gupta, R., 1981, Are Archaebacteria merely derived `prokaryotes’?, Nature (London) 289: 95–96.Google Scholar
  124. Zhang, Z., 1980, Precambrian spheroidal unicells showing pseudo-organelles, Kexue Tongbao 25: 862–865.Google Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • Andrew H. Knoll
    • 1
  1. 1.Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeUSA

Personalised recommendations