Diversification, Faunal Change, and Community Replacement during the Ordovician Radiations

  • J. John SepkoskiJr.
  • Peter M. Sheehan
Part of the Topics in Geobiology book series (TGBI, volume 3)


The Ordovician evolutionary radiations represent a major pivotal point in the history of life on earth. During the few tens of million years between the ends of the Cambrian and Ordovician Periods, the nature of marine faunas was almost completely changed. The trilobite-dominated communities of the Cambrian were replaced by complex suspension-feeding communities dominated by brachiopods, bryozoans, and pelmatozoans, and taxonomic diversity, as seen at both local (i.e., community-wide) and global (i.e., worldwide) levels, was increased two- to threefold. These new faunal patterns then persisted with only minor change for the next 200 m.y. of the Paleozoic. Only two other events in the history of marine faunas had comparable importance: the Vendian to Early Cambrian radiations, which emplaced the first marine fauna, and the Late Permian extinctions, which destroyed the Paleozoic fauna established during the Ordovician and led to the subsequent dominance of the modern marine fauna.


Mass Extinction Lower Cambrian Late Ordovician Primary Cluster Secondary Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aitken, J. D., 1981, Generalizations about grand cycles, in: Short Papers for the Second International Symposium on the Cambrian System (M. E. Taylor, ed.), pp. 8–14, U.S. Geol. Surv. Open-File Rep. 81–743.Google Scholar
  2. Ausich, W. I., and Bottjer, D. J., 1982, Tiering in suspension-feeding communities on soft substrata throughout the Phanerozoic, Science 216: 173–174.PubMedGoogle Scholar
  3. Bambach, R. K., 1977, Species richness in marine benthic habitats through the Phanerozoic, Paleobiology 3: 152–167.Google Scholar
  4. Bambach, R. K., and Sepkoski, J. J., Jr., 1979, The increasing influence of biologic activity on sedimentary stratification through the Phanerozoic, Geol. Soc. Am. Abstr. Progr. 11: 383.Google Scholar
  5. Bayer, T. N., 1965, The Maquoketa Formation in Minnesota and an analysis of its benthonic communities, Ph.D. dissertation, University of Minnesota.Google Scholar
  6. Bayer, T. N., 1967, Repetitive benthonic community in the Maquoketa Formation (Ordovician) of Minnesota, J. Paleontol. 41: 417–422.Google Scholar
  7. Berry, W. B. N., 1972, Early Ordovician bathyurid province lithofacies, biofacies, and cor-relations—Their relationship to a proto-Atlantic Ocean, Lethaia 5: 69–84.Google Scholar
  8. Berry, W. B. N., 1974, Types of Early Paleozoic faunal replacements in North America: Their relationship to environmental change, J. Geol. 82: 371–382.Google Scholar
  9. Berry, W. B. N., 1977, Graptolite biostratigraphy: A wedding of classical principles and current concepts, in: Concepts and Methods of Biostratigraphy ( E. G. Kauffman and J. E. Hazel, eds.), pp. 321–338, Dowden, Hutchinson & Ross, Stroudsburg, Pa.Google Scholar
  10. Berry, W. B. N., Lawson, D. A., and Yancey, E. S., 1979, Species-diversity patterns in some Middle Ordovician communities from California–Nevada, Palaeogeogr. Palaeoclimatol. Palaeoecol. 26: 99–116.Google Scholar
  11. Boucot, A. J., 1975, Evolution and Extinction Rate Controls. Elsevier, Amsterdam.Google Scholar
  12. Boucot, A. J., 1978, Community evolution and rates of cladogenesis, Evol. Biol. 11: 545–654Google Scholar
  13. Brasier, M. D., 1979, The Cambrian radiation event, in: The Origins of Major Invertebrate Groups ( M. R. House, ed.), pp. 103–159, Academic Press, New York.Google Scholar
  14. Bretsky, P. W., 1968, Evolution of Paleozoic marine invertebrate communities, Science 159: 1231–1233.PubMedGoogle Scholar
  15. Bretsky, P. W., 1969a, Evolution of Paleozoic benthic marine invertebrate communities, Palaeogeogr. Palaeoclimatol. Palaeoecol. 6: 45–59.Google Scholar
  16. Bretsky, P. W., 1969b, Central Appalachian Late Ordovician communities, Geol. Soc. Am. Bull. 80: 193–212.Google Scholar
  17. Bretsky, P. W., 1970a, Upper Ordovician ecology of the Central Appalachians, Peabody Mus. Nat. Hist. Yale Univ. Bull. 34: 1–150.Google Scholar
  18. Bretsky, P. W., 1970b, Late Ordovician benthic marine communities in north-central New York, N.Y. State Mus. Sci. Serv. Bull. 414: 1–34.Google Scholar
  19. Bretsky, P. W., and Lorenz, D. M., 1970, An essay on genetic-adaptive strategies and mass extinctions, Geol. Soc. Am. Bull. 81: 2449–2456.Google Scholar
  20. Bretsky, P. W., and Lorenz, D. M., 1971, Adaptive response to environmental stability: A unifying concept in paleoecology, North Am. Paleontol. Cony., 1969, Proc., Part E, pp. 522–550.Google Scholar
  21. Bretsky, P. W., Bretsky, S. S., and Schaefer, P. J., 1977, Molluscan and brachiopod dominated biofacies in the Platteville Formation (Middle Ordovician), upper Mississippi Valley, Bull. Geol. Soc. Den. 26: 115–132.Google Scholar
  22. Brett, C. E., and Liddell, W. D., 1978, Preservation and paleoecology of a Middle Ordovician hardground community, Paleobiology 4: 329–348.Google Scholar
  23. Bright, R. C., 1956, A paleoecologic and biometric study of the Middle Cambrian trilobite Elrathia kingii (Meek), J. Paleontol. 33: 83–98.Google Scholar
  24. Brongersma-Sanders, M., 1957, Mass mortality in the sea, Geol. Soc. Am. Mem. 67 (1): 941–1010.Google Scholar
  25. Carr, T. R., and Kitchell, J. A., 1980, Dynamics of taxonomic diversity, Paleobiology 6: 427–443.Google Scholar
  26. Carson, H. L., 1968, The population flush and its genetic consequences, in: Population Biology and Evolution ( R. C. Lewontin, ed.), pp. 123–137, Syracuse University Press, Syracuse.Google Scholar
  27. Case, T. J., and Casten, R. G., 1979, Global stability and multiple domains of attraction in ecological systems, Am. Nat. 113: 705–714.Google Scholar
  28. Cisne, J. L., 1973, Beecher’s trilobite bed revisited: Ecology of an Ordovician deepwater fauna, Peabody Mus. Nat. Hist. Yale Univ. Postilla 160.Google Scholar
  29. Cisne, J. L., 1974, Evolution of the world fauna of aquatic free-living arthropods, Evolution 28: 337–366.Google Scholar
  30. Conway Morris, S., 1979, The Burgess Shale ( Middle Cambrian) fauna, Annu. Rev. Ecol. Syst. 10: 327–349.Google Scholar
  31. Cook, H. E., and Taylor, M. E., 1975, Early Paleozoic continental margin sedimentation, trilobite biofacies and the thermocline, western United States, Geology 3: 559–562Google Scholar
  32. Cooper, B. N., and Cooper, G. A., 1946, Lower Middle Ordovician stratigraphy of the Shen-andoah Valley, Virginia, Geol. Soc. Am. Bull. 57: 35–113.Google Scholar
  33. Cooper, G. A., 1956, Chazyan and related brachiopods, Smithson. Misc. Collect. 127Google Scholar
  34. Crick, R. E., 1981, Diversity and evolutionary rates of Cambro-Ordovician nautiloids, Paleobiology 7: 200–215.Google Scholar
  35. Crimes, T. P., 1974, Colonization of the early ocean floor, Nature (London) 248: 328–330.Google Scholar
  36. Crimes, T. P., 1977, Cambrian trace fossil communities and the progressive colonisation of the ocean floor, J. Paleontol. 51: 8.Google Scholar
  37. Dauer, D. M., and Simon, J. L., 1976, Repopulation of the polychaete fauna of an intertidal habitat following natural defaunation: Species equilibrium, Oecologia (Berlin) 22: 99–117.Google Scholar
  38. Dimitriyev, V. Y., 1978, Some aspects of the study of changes in the systematic diversity of fossil organisms, Paleontol. J. 12: 257–265.Google Scholar
  39. Elles, G. L., 1939, Factors controlling graptolite succession and assemblages, Geol. Mag. 76: 181–187.Google Scholar
  40. Firby, J. B., and Durham, J. W., 1974, Molluscan radula from earliest Cambrian, J. Paleontol. 48: 1109–1119.Google Scholar
  41. Fisher, D. W., 1956, The Cambrian system of New York State, in: El Sistema Cambrico (J. Rogers, ed.), pp. 321–351, Proc. 20th Int. Geol. Congr., Mexico.Google Scholar
  42. Flessa, K. W., 1979, Extinction, in: The Encyclopedia of Paleontology ( R. W. Fairbridge and D. Jablonski, eds.), pp. 300–305, Dowden, Hutchinson & Ross, Stroudsburg, Pa.Google Scholar
  43. Fortey, R. A., 1975, Early Ordovician trilobite communities, in: Evolution and Morphology of the Trilobita, Trilobitoidea and Merostomata (A. Martinsson, ed.), pp. 331–352, Fossils Strata No. 4.Google Scholar
  44. Fox, W. T., 1968, Quantitative paleoecologic analysis of fossil communities in the Richmond Group, J. Geol. 76: 613–640.Google Scholar
  45. Fritz, W. H., 1971, Geological setting of the Burgess Shale, North Am. Paleontol. Cony., 1969, Proc., pp. 1155–1170.Google Scholar
  46. Futuyma, D. J., 1973, Community structure and stability in constant environments, Am. Nat. 107: 443–446.Google Scholar
  47. Gould, S. J., 1977, Ontogeny and Phylogeny, Belknap Press, Cambridge, Mass.Google Scholar
  48. Grant, R. E., 1965, Faunas and stratigraphy of the Snowy Range Formation ( Upper Cambrian) in southwestern Montana and northwestern Wyoming, Geol. Soc. Am. Mem. 96Google Scholar
  49. Gunter, G., 1947, Catastrophism in the sea and its paleontologic significance with special reference to the Gulf of Mexico, Am. J. Sci. 245: 669–676.Google Scholar
  50. Hayes, B. J. R., 1980, A cluster analysis interpretation of Middle Ordovician biofacies, southern Mackenzie Mountains, Can. J. Earth Sci. 17: 1377–1388.Google Scholar
  51. Hoffman, A., 1979, Community paleoecology as an epiphenomenal science, Paleobiology 5: 357–379.Google Scholar
  52. House, M. R., 1967, Fluctuations in the evolution of Palaeozoic invertebrates, in: The Fossil Record ( W. B. Harland et al., eds.), pp. 41–54, Geological Society of London, London.Google Scholar
  53. Imbrie, J., and Purdy, E. G., 1962, Classification of modern Bahamian carbonate sediments, in: Classification of Carbonate Rocks (W. E. Ham, ed.), pp. 253–272, Am. Assoc. Petrol. Geol. Mem. 1.Google Scholar
  54. Jaanusson, V., 1979, Ordovician, in: Treatise on Invertebrate Paleontology, Part A ( R. A. Robison and C. Teichert, eds.), pp. A136 — A166, Geological Society of America and University of Kansas, Lawrence.Google Scholar
  55. Jablonski, D., 1980, Apparent versus real biotic effects of transgressions and regressions, Paleobiology 6: 397–407.Google Scholar
  56. Jablonski, D., and Valentine, J. W., 1981, Onshore—offshore gradients in Recent eastern Pacific shelf faunas and their paleobiogeographic significance, in: Evolution Today, Proceedings of the Second International Congress of Systematic and Evolutionary Biology ( G. G. E. Scudder and J. L. Reveal, eds.), pp. 441–453, Carnegie—Mellon University, Pittsburgh.Google Scholar
  57. Jackson, J. B. C., 1974, Biogeographic consequences of eurytopy and stenotopy among marine bivalves and their evolutionary significance, Am. Nat. 108: 541–560.Google Scholar
  58. Johnson, R. G., 1972, Conceptual models of benthic marine communities, in: Models in Paleobiology ( T. J. M. Schopf, ed.), pp. 148–159, Freeman, San Francisco.Google Scholar
  59. Kauffman, E. G., 1974, Cretaceous assemblages, communities, and associations: Western Interior, United States and Caribbean Islands, in: Principles of Benthic Community Analysis ( A. M. Ziegler et al. eds.), pp. 121–1227, University of Miami Press, Coral Gables, Fla.Google Scholar
  60. Kay, M., 1962, Classification of Ordovician shelly and graptolite sequences from central Nevada, Geol. Soc. Am. Bull. 73: 1421–1430.Google Scholar
  61. Kay, M., and Crawford, J. P., 1964, Paleozoic facies from the miogeosynclinal to the eugeo- synclinal belt in thrust slices, central Nevada, Geol. Soc. Am. Bull. 75: 425–454Google Scholar
  62. Klovan, J. E., and Imbrie, J., 1971, An algorithm and FORTRAN-IV program for large-scaleQ-mode factor analysis and calculation of factor scores, Math. Geol. 3: 61–77.Google Scholar
  63. Kulik, J. W., 1965, Stratigraphy of the Deadwood Formation, Black Hills, South Dakota and Wyoming, M.S. thesis, South Dakota School of Mines and Technology.Google Scholar
  64. LaBarbera, M., 1981, The ecology of Mesozoic Gryphaea, Exogyra, and Ilymatogyra (Bivalvia: Mollusca) in a modern ocean, Paleobiology 7: 510–526.Google Scholar
  65. Levinton, J. S., 1979, A theory of diversity equilibrium and morphological evolution, Science 204: 335–336.PubMedGoogle Scholar
  66. Lochman, C., and Duncan, D., 1944, Early Upper Cambrian faunas of central Montana, Geol. Soc. Am. Spec. Pap. 54: 1–181.Google Scholar
  67. Lochman, C., and Hu, C.-H., 1961, Upper Cambrian faunas from the northwest Wind River Mountains, Wyoming: Part II, J. Paleontol. 35: 125–246.Google Scholar
  68. Lochman-Balk, C., 1970, Upper Cambrian faunal patterns on the craton, Geol. Soc. Am. Bull. 81: 3197–3224.Google Scholar
  69. Lochman-Balk, C., and Wilson, J. L., 1967, Stratigraphy of Upper Cambrian—Lower Ordovician subsurface sequence in Williston Basin, Am. Assoc. Petrol. Geol. Bull. 51: 883–917.Google Scholar
  70. Ludvigsen, R., 1975, Ordovician formations and faunas, southern Mackenzie Mountains, Can. J. Earth Sci. 12: 663–697.Google Scholar
  71. Ludvigsen, R., 1978, Middle Ordovician trilobite biofacies, southern Mackenzie Mountains, in: Western and Arctic Canadian Biostratigraphy (C. R. Stelck and B. D. E. Chatterton, eds.), pp. 1–37, Geol. Assoc. Can. Spec. Pap. 18.Google Scholar
  72. Ludvigsen, R., 1979, A trilobite zonation of Middle Ordovician rocks, southwestern District of Mackenzie, Geol. Surv. Can. Bull. 312: 1–98.Google Scholar
  73. MacArthur, R. H., 1969. Patterns of communities in the tropics, Biol. J. Linn. Soc. 1: 19–30Google Scholar
  74. MacArthur, R. H., 1972, Geographical Ecology, Harper & Row, New York.Google Scholar
  75. McBride, D. J., 1976, Outer shelf communities and trophic groups in the Upper Cambrian of the Great Basin, in: Paleontology and Depositional Environments: Cambrian of Western North America (R. A. Robison and A. J. Rowell. eds.), pp. 139–152, Brigham Young Univ. Geol. Stud. 23(2).Google Scholar
  76. McCall, P. L., 1977, Community patterns and adaptive strategies of the infaunal benthos of Long Island Sound, J. Mar. Res. 35: 221–266.Google Scholar
  77. McCall, P. L., 1978, Spatial—temporal distributions of Long Island Sound infauna: The role of bottom disturbance in a nearshore marine habitat, in: Estuarine Interactions ( M. L. Wiley, ed.), pp. 191–219, Academic Press, New York.Google Scholar
  78. McKee, E. H., Norford, B. S., and Ross, R. J., Jr., 1972, Correlation of the Ordovician shelly facies Orthidiella Zone with zones of the graptolitic facies, Toquima Range, Nevada, and North White River Region, British Columbia, U.S. Geol. Surv. Prof. Pap. 800: 145–156.Google Scholar
  79. McKerrow, W. S. (ed.), 1978, The Ecology of Fossils, MIT Press, Cambridge, Mass.Google Scholar
  80. Mazzullo, S. J., and Friedman, G. M., 1977, Competitive algal colonization of peritidal flats in a schizohaline environment: The Lower Ordovician of New York, J. Sediment. Petrol. 47: 398–410.Google Scholar
  81. Morris, N. J., 1979, On the origin of the Bivalvia, in: The Origin of Major Invertebrate Groups ( M. R. House, ed.), pp. 381–414, Academic Press, New York.Google Scholar
  82. Palmer, A. R., 1954, The faunas of the Riley Formation in central Texas, J. Paleontol. 28: 709–786.Google Scholar
  83. Palmer, A. R., 1965, Biomere, a new kind of biostratigraphic unit, J. Paleontol. 39: 149–153Google Scholar
  84. Palmer, A. R., 1973, Cambrian trilobites, in: Atlas of Palaeobiogeography ( A. Hallam, ed.), pp. 3–11, Elsevier, Amsterdam.Google Scholar
  85. Palmer, A. R., 1979, Cambrian, in: Treatise on Invertebrate Paleontology, Part A ( R. A. Robison and C. Teichert, eds.), pp. A119 - A135, Geological Society of America and University of Kansas, Lawrence.Google Scholar
  86. Palmer, A. R., 1982, Biomere boundaries: A possible test for extraterrestrial perturbation of the biosphere, in: Geological Implications of the Impact of Large Asteroids and Comets on the Earth (L. T. Silver and P. H. Schultz, eds.), Geol. Soc. Am. Spec. Pap. 190: 469–476.Google Scholar
  87. Palmer, A. R., and Campbell, D. P., 1976, Biostratigraphic implications of trilobite biofacies: Albertella Zone, Middle Cambrian, western United States, in: Paleontology and Depositional Environments: Cambrian of Western North America (R. A. Robison and A. J. Rowell, eds.), pp. 39–50, Brigham Young Univ. Geol. Stud. 23(2).Google Scholar
  88. Palmer, A. R., and Halley, R. B., 1979, Physical stratigraphy and trilobite biostratigraphy of the Carrara Formation (Lower and Middle Cambrian) in the southern Great Basin, U.S. Geol. Surv. Prof. Pap. 1047: 1–131.Google Scholar
  89. Parker, W. C., 1983, Fossil ecological succession in Paleozoic level bottom brachiopodbryozoan communities, Ph.D. dissertation, University of Chicago.Google Scholar
  90. Percival, I. G., 1978, Inarticulate brachiopods from the Late Ordovician of New South Wales, and their palaeoecological significance, Alcheringa 2: 117–141.Google Scholar
  91. Pojeta, J., Jr., 1981, Paleontology of Cambrian mollusks, in: Short Papers for the Second International Symposium on the Cambrian System (M. E. Taylor, ed.), pp. 163–166, U.S. Geol. Surv. Open-File Rep. 81–743.Google Scholar
  92. Raup, D. M., 1976, Species diversity in the Phanerozoic: A tabulation, Paleobiology 2: 279–288.Google Scholar
  93. Raup, D. M., and Sepkoski, J. J., Jr., 1982, Mass extinctions in the marine fossil record, Science 215: 1501–1503.PubMedGoogle Scholar
  94. Raup, D. M., Gould, S. J., Schopf, T. J. M., and Simberloff, D. S., 1973, Stochastic models of phylogeny and the evolution of diversity, J. Geol. 81: 525–542.Google Scholar
  95. Read, J. F., 1980, Carbonate ramp-to-basin transitions and foreland basin evolution, Middle Ordovician, Virginia Appalachians, Am. Assoc. Petrol. Geol. Bull. 64: 1575–1612Google Scholar
  96. Resser, C. E., and Howell, B. F., 1938, Lower Cambrian Olenellus Zone of the Appalachians, Geol. Soc. Am. Bull. 49: 195–248.Google Scholar
  97. Richards, R. P., 1972, Autecology of Richmondian brachiopods (Late Ordovician) of Indiana and Ohio, J. Paleontol. 46: 386–405.Google Scholar
  98. Robison, R. A., 1971, Additional Middle Cambrian trilobites from the Wheeler Shale of Utah, J. Paleontol. 45: 796–804.Google Scholar
  99. Rosenzweig, M. L., 1975, On continental steady states of species diversity, in: Ecology and Evolution of Communities ( M. L. Cody and J. M. Diamond, eds.), pp. 121–140, Belknap Press, Cambridge, Mass.Google Scholar
  100. Ross, R. J., Jr., 1949, Stratigraphy and trilobite faunal zones of the Garden City Formation, northeastern Utah, Am. J. Sci. 247: 472–491.Google Scholar
  101. Ross, R. J., Jr., 1951, Stratigraphy of the Garden City Formation in northeastern Utah and its trilobite faunas, Peabody Mus. Nat. Hist. Yale Univ. Bull. 6.Google Scholar
  102. Ross, R. J., Jr., 1967, Some Middle Ordovician brachiopods and trilobites from the Basin Ranges, western United States, U.S. Geol. Surv. Prof. Pap. 523D: D1 — D43.Google Scholar
  103. Ross, R. J., Jr., 1968, Brachiopods from the upper part of the Garden City Formation (Or-dovician) north-central Utah, U.S. Geol. Sun’. Prof. Pap. 593: H1 — H13.Google Scholar
  104. Ross, R. J., Jr., 1970, Ordovician brachiopods, trilobites, and stratigraphy in eastern and central Nevada, U.S. Geol. Surv. Prof. Pap. 639: 1–103.Google Scholar
  105. Ross, R. J., Jr., 1975, Early Paleozoic trilobites, sedimentary facies, lithospheric plates, and ocean currents, in: Evolution and Morphology of the Trilobita, Trilobitoidea, and Merostomata (A. Martinsson, ed.), pp. 307–330, Fossils Strata No. 4.Google Scholar
  106. Ross, R. J., Jr., 1976, Ordovician sedimentation in the western United States, in: The Ordovician System ( M. G. Bassett, ed.), University of Wales Press and National Museum of Wales, Cardiff.Google Scholar
  107. Ross, R. J., Jr., and Shaw, F. C., 1972, Distribution of the Middle Ordovician Copenhagen Formation and its trilobites in Nevada, U.S. Geol. Surv. Prof. Pap. 749.Google Scholar
  108. Ross, R. J., Jr., Nolan, T. B., and Harris, A. G., 1979, The Upper Ordovician and Silurian Hanson Creek Formation of central Nevada, U.S. Geol. Surv. Prof. Pap. 1126-C.Google Scholar
  109. Runnegar, B., 1981, Biostratigraphy of Cambrian mollusks, in: Short Papers for the Second International Symposium on the Cambrian System (M. E. Taylor, ed.), pp. 198–202, U.S. Geol. Surv. Open-File Rep. 81–743.Google Scholar
  110. Runnegar, B., Pojeta, J., Jr., Taylor, M. E., and Collins, D., 1979, New species of the Cambrian and Ordovician chitons Matthevia and Chelodes from Wisconsin and Queensland: Evidence for the early history of polyplacophoran molluscs, 1. Paleontol. 53: 1374–1394.Google Scholar
  111. Sanders, H. L., 1968, Marine benthic diversity: A comparative study, Am. Nat. 102: 243–282.Google Scholar
  112. Sando, W. J., 1957, Beekmantown Group (Lower Ordovician) of Maryland, Geol. Soc. Am. Mem. 68.Google Scholar
  113. Schopf, T. J. M., 1980, Paleoceanography, Harvard University Press, Cambridge Mass. Scotese, C. R., Bambach, R. K., Barton, C., Van der Voo, R., and Ziegler, A. M., 1979, Paleozoic base maps, J. Geol. 87: 217–277.Google Scholar
  114. Seilacher, A., 1974, Flysch trace fossils: Evolution of behavioral diversity in the deep-sea, Neues Jahrb. Geol. Paläontol. Monatsh. 4: 233–245.Google Scholar
  115. Sepkoski, J. J., Jr., 1974, Quantified coefficients of association and measurement of similarity, Math. Geol. 6: 135–152.Google Scholar
  116. Sepkoski, J. J., Jr., 1978, A kinetic model of Phanerozoic taxonomic diversity. I. Analysis of marine orders, Paleobiology 4: 223–251.Google Scholar
  117. Sepkoski, J. J., Jr., 1979, A kinetic model of Phanerozoic taxonomic diversity. II. Early Phanerozoic families and multiple equilibria, Paleobiology 5: 222–251.Google Scholar
  118. Sepkoski, J. J., Jr., 1981a, A factor analytic description of the Phanerozoic marine fossil record, Paleobiology 7: 36–53.Google Scholar
  119. Sepkoski, J. J., Jr., 1981b, The uniqueness of the Cambrian fauna, in: Short Papers for the Second International Symposium on the Cambrian System (M. E. Taylor, ed.), pp. 203–207, U.S. Geol. Surv. Open-File Rep. 81–743.Google Scholar
  120. Sepkoski, J. J., Jr., 1982a, Mass extinctions in the Phanerozoic oceans: A review, in: Geological Implications of the Impact of Large Asteroids and Comets on the Earth (L. T. Silver and P. H. Schultz, eds.), Geol. Soc. Am. Spec. Pap. 190: 283–290.Google Scholar
  121. Sepkoski, J. J., Jr., 1982b, Flat-pebble conglomerates, storm deposits. and the Cambrian bot-tom fauna, in: Cyclic and Event Stratification ( G. Einsele and A. Seilacher, eds.), pp. 371–385, Springer-Verlag, Berlin.Google Scholar
  122. Sepkoski, J. J., Jr., 1982c, A compendium of marine fossil families, Milwaukee Public Mus. Contrib. Biol. Geol. No. 51.Google Scholar
  123. Sepkoski, J. J., Jr., and Miller, A. I., 1982, Large-scale patterns of community evolution in the Paleozoic oceans, Geol. Soc. Am. Abstr. Progr. 14: 287.Google Scholar
  124. Sepkoski, J. J., Jr., Bambach, R. K., Raup, D. M., and Valentine, J. W., 1981, Phanerozoic marine diversity and the fossil record, Nature (London) 293: 435–437.Google Scholar
  125. Sheehan, P. M., 1973, The relation of Late Ordovician glaciation to the Ordovician–Silurian changeover in North American brachiopod faunas, Lethaia 6: 147–154.Google Scholar
  126. Sheehan, P. M., 1975, Brachiopod synecology in a time of crisis (Late Ordovician–Early Silurian), Paleobiology 1: 205–212.Google Scholar
  127. Sheehan, P. M., 1979, Swedish Late Ordovician marine benthic assemblages and their bearing on brachiopod zoogeography, in: Historical Biogeography, Plate Tectonics, and the Changing Environment ( J. Gray and A. J. Boucot, eds.), pp. 61–73, Oregon State University Press, Corvallis.Google Scholar
  128. Sheehan, P. M., 1981, Biogeographic evidence for structure in Ordovician communities, Geol. Soc. Am. Abstr. Progr. 13: 316.Google Scholar
  129. Simberloff, D. S., 1974, Equilibrium theory of island biogeography and ecology, Annu. Rev. Ecol. Syst. 5: 161–182.Google Scholar
  130. Sloss, L. L., 1963, Sequences in the cratonic interior of North America, Geol. Soc. Am. Bull. 74: 93–114.Google Scholar
  131. Sneath, P. H. A., and Sokal, R. R., 1973, Numerical Taxonomy, Freeman, San Francisco. Stanley, S. M., 1968, Post-Paleozoic adaptive radiation of infaunal bivalve molluscs—A consequence of mantle fusion and siphon formation, J. Paleontol. 42: 214–229.Google Scholar
  132. Stanley, S. M., 1970, Relation of shell form to life habits in the Bivalvia, Geol. Soc. Am. Mem. 125.Google Scholar
  133. Stanley, S. M., 1972, Functional morphology and evolution of byssally attached bivalve molluscs, J. Paleontol. 46: 165–212.Google Scholar
  134. Stanley, S. M., 1977, Trends, rates, and patterns of evolution in the Bivalvia, in: Patterns of Evolution ( A. Hallam, ed.), pp. 209–250, Elsevier, Amsterdam.Google Scholar
  135. Stanley, S. M., 1979, Macroevolution: Pattern and Process, Freeman, San Francisco.Google Scholar
  136. Stanley, S. M., Signor, R. W., III, Lidgard, S.. and Karr, A. F., 1981, Natural clades differ from “random” clades: Simulations and analysis, Paleobiology 7: 115–127.Google Scholar
  137. Steele-Petrovic, M., 1979, The physiological differences between articulate brachiopods and filter-feeding bivalves as a factor in the evolution of marine level-bottom communities, Palaeontology 22: 101–134.Google Scholar
  138. Stinchcomb, B. L., 1975, Paleoecology of two new species of Late Cambrian Hypseloconus (Monoplacophora) from Missouri, J. Paleontol. 49: 416–421.Google Scholar
  139. Stitt, J. H., 1971, Repeating evolutionary pattern in Late Cambrian trilobite biomeres, J. Paleontol. 45: 178–181.Google Scholar
  140. Sutherland, J. P., 1974, Multiple stable points in natural communities, Am. Nat. 108: 859–873.Google Scholar
  141. Taylor, M. E., 1977, Late Cambrian of western North America: Trilobite biofacies, environmental significance, and biostratigraphic implications, in: Concepts and Methods of Biostratigraphy ( E. G. Kauffman and J. E. Hazel, eds.), pp. 397–426, Dowden, Hutchinson & Ross, Stroudsburg, Pa.Google Scholar
  142. Taylor, M. E., and Halley, R. B., 1974, Systematics, environment, and biogeography of some Late Cambrian and Early Ordovician trilobites from eastern New York State, U.S. Geol. Surv. Prof. Pap. 834: 1–38.Google Scholar
  143. Thayer, C. W., 1979, Biological bulldozers and the evolution of marine benthic communities, Science 203: 458–461.PubMedGoogle Scholar
  144. Titus, R., and Cameron, B., 1976, Fossil communities of the lower Trenton Group (Middle Ordovician) of central and northwestern New York State, J. Paleontol. 50: 1209–1225.Google Scholar
  145. Vail, P. R., Mitchum, R. H., Jr., and Thompson, S., III, 1977, Seismic stratigraphy and global changes of sea level. Part 4. Global cycles of relative changes of sea level, in: Seismic Stratigraphy—Applications to Hydrocarbon Exploration (C. E. Payton, ed.), pp. 83–97, Am. Assoc. Petrol. Geol. Mem. 26.Google Scholar
  146. Valentine, J. W., 1973, Evolutionary Paleoecology of the Marine Biosphere, Prentice–Hall, Englewood Cliffs, N.J.Google Scholar
  147. Vermeij, G. J., 1977, The Mesozoic marine revolution: Evidence from snails, predators, and grazers, Paleobiology 3: 245–258.Google Scholar
  148. Vermeij, G. J., 1978, Biogeography and Adaptation, Harvard University Press, Cambridge, Mass.Google Scholar
  149. Waddington, J. B., 1980, A soft substrate community with edrioasteroids, from the Verulam Formation (Middle Ordovician) at Gamebridge, Ontario, Can. J. Earth Sci. 17: 674–679Google Scholar
  150. Walker, K. R., 1972a, Community ecology of the Middle Ordovician Black River Group of New York State, Geol. Soc. Am. Bull. 83: 2499–2524.Google Scholar
  151. Walker, K. R., 1972b, Trophic analysis: A method for studying the function of ancient communities, J. Paleontol. 46: 82–93.Google Scholar
  152. Walker, K. R., and Parker, W. C., 1976, Population structure of a pioneer and a later stage species in an Ordovician ecological succession, Paleobiology 2: 191–201.Google Scholar
  153. Walker, K. R., Broadhead, T. W., and Keller, F. B., 1980, Middle Ordovician carbonate shelf to deep water basin deposition in the southern Appalachians, Univ. Tenn. Dept. Geol. Sci. Stud. Geol. 4.Google Scholar
  154. Wassersug, R. J., Yang, H., Sepkoski, J. J., Jr., and Raup, D. M., 1979, The evolution of body size on islands: A computer simulation, Am. Nat. 114: 287–295.Google Scholar
  155. Watkins, R., Berry, W. B. N., and Boucot, A. J., 1973, Why “communities”?, Geology 1: 5560.Google Scholar
  156. West, R. R., 1976, Comparison of seven lingulid communities, in: Structure and Classification of Paleocommunities ( R. W. Scott and R. R. West, eds.), pp. 171–192, Dowden, Hutchinson & Ross, Stroudsburg, Pa.Google Scholar
  157. Whittaker, R. H., 1972, Evolution and measurement of species diversity, Taxon 21: 213–251Google Scholar
  158. Whittaker, R. H., 1975, Communities and Ecosystems, 2nd ed., Macmillan Co., New YorkGoogle Scholar
  159. Willoughby, R., 1976, Lower and Middle Cambrian fossils from the Shady Formation, Aus-tinville, Virginia, Geol. Soc. Am. Abstr. Progr. 8: 301–302.Google Scholar
  160. Wilson, D. S., 1980, The Natural Selection of Populations and Communities, Benjamin/ Cummings, Menlo Park, Calif.Google Scholar
  161. Wilson, E. O., 1969, The species equilibrium, in: Diversity and Stability in Ecological Systems, pp. 38–47, Brookhaven Symp. Biol. No. 22.Google Scholar
  162. Ziegler, A. M., Bambach, R. K., Parrish, J. T., Barret, S. F., Gierlowski, E. H., Parker, W. C., Raymond, A., and Sepkoski, J. L. Jr., 1981, Paleozoic biogeography and climatology, in: Paleobotany, Paleoecology, and Evolution ( K. J. Niklas, ed.), pp. 231–266, Praeger, New York.Google Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • J. John SepkoskiJr.
    • 1
  • Peter M. Sheehan
    • 2
  1. 1.Department of the Geophysical SciencesUniversity of ChicagoChicagoUSA
  2. 2.Department of GeologyMilwaukee Public MuseumMilwaukeeUSA

Personalised recommendations