Some Aspects of Energy Coupling by Mitochondria

  • Albert L. Lehninger
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 111)


This paper will review some recent developments and trends of thought on the energetics, mechanism, and dynamics of electron transport and oxidative phosphorylation, as well as some aspects of the interplay between the mitochondrial and cytosolic compartments of cells basic to an understanding of metabolic regulation.


Electron Transport Oxidative Phosphorylation Electron Flow Electron Carrier Energy Coupling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adolfsen, R. and Moudrianakis, E. (1976). Binding of adenine nucleotides to the purified 13S coupling factor of bacterial oxidative phosphorylation. Arch. Biochem. Biophys. 172: 425433.Google Scholar
  2. Boyer, P.D. (1965). Carboxyl activation as a possible common reaction in substrate-level and oxidative phosphorylation and in muscle contraction. In: T.E. King, H.S. Mason, and M. Morrison (Eds.) Oxidases and Related Redox Systems. pp. 994–1008. Wiley, New York.Google Scholar
  3. Boyer, P.D., Smith, D.J., Rosing, J., and Kayalar, C. (1975). Bound nucleotides and conformational changes in oxidative and photophosphorylation. In: E. Quagliariello, S. Papa, F. Palmieri, E.C. Slater, and N. Siliprandi (Eds.) Electron Transfer Chains and Oxidative Phosphorylation. pp. 361–372. North-Holland, Amsterdam.Google Scholar
  4. Brand, M.D. and Lehninger, A.L. (1977). H+/ATP ratio during ATP hydrolysis by mitochondria: Modification of the chemiosmotic theory. Proc. Nat. Acad. Sci. 74: 1955–1959.PubMedCrossRefGoogle Scholar
  5. Brand, M.D., Chen, C-H, and Lehninger, A.L. (1976). Stoichiometry of H+ ejection during respiration-dependent accumulation of Cat+ by rat liver mitochondria. J. BioZ. Chem. 251: 968–974.Google Scholar
  6. Brand, M.D., Reynafarje, B., and Lehninger, A.L. (1976a). Reevaluation of the H+/site ratio of mitochondrial electron transport with the oxygen pulse technique. J. Biol. Chem. 251: 5670–5679.PubMedGoogle Scholar
  7. Brand, M.D., Reynafarje, B., and Lehninger, A.L. (1976b). Stoichiometric relationship between energy-dependent proton ejection and electron transport in mitochondria. Proc. Nat. Acad. Sci. 73: 437–441.PubMedCrossRefGoogle Scholar
  8. Chance, B. (1977). Electron transfer: Pathways, mechanisms, and controls. Ann. Rev. Biochem. 46: 967–980.PubMedCrossRefGoogle Scholar
  9. Chance, B. (1972). The nature of electron transfer and energy coupling reactions. FEBS Lett. 23: 3–20.PubMedCrossRefGoogle Scholar
  10. Ernster, L., and Lee, C.P. (1964). Biological oxidoreductions Ann. Rev. Biochem. 33: 729–788.PubMedCrossRefGoogle Scholar
  11. Klingenberg, M. (1972). ATP synthesis and adenine nucleotide transport in mitochondria. In: S.G. Van den Bergh, P. Borst, L.L.M. Van Deenen, J.C. Riemersma, E.C. Slater, and J.M. Tager (Eds.) Mitochondria: Biogenesis and Bioenergetics. Biomembranes: Molecular Arrangements and Transport Mechanisms. pp. 147–162. North-Holland, Amsterdam.Google Scholar
  12. Klingenberg, M. (1970). Metabolite transport in mitochondria: An example for intracellular membrane function. Essays in Biochem. 6: 119–159.Google Scholar
  13. Lehninger, A.L. (1975). Biochemistry. Worth Publishers, Inc., New York.Google Scholar
  14. Lehninger, A.L. (1970). Mitochondria and calcium ion transport. Biochem. J. 119: 129–138.PubMedGoogle Scholar
  15. Mitchell, P. (1968). Chemiosmotic Coupling and Energy Transduction. Glynn Research Ltd., Bodmin, England.Google Scholar
  16. Mitchell, P. (1966). Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol. Rev. 41: 445–502.PubMedCrossRefGoogle Scholar
  17. Mitchell, P. and Moyle, J. (1968). Proton translocation coupled to ATP hydrolysis in rat liver mitochondria. Eur. J. Biochem. 4: 530–539.PubMedCrossRefGoogle Scholar
  18. Mitchell, P. and Moyle, J. (1967). Respiration-driven proton dislocation in rat liver mitochondria. Biochem. J. 105: 1147–1162.PubMedGoogle Scholar
  19. Pedersen, P.L. (1975). Mitochondrial adenosine triphosphatase. J. Bioenergetics 6: 243–275.CrossRefGoogle Scholar
  20. Reynafarje, B., Brand, M.D., and Lehninger, A.L. (1976). Evaluation of the H+/site ratio of mitochondrial electron trans- port from rate measurements. J. Biol. Chem. 251: 7442–7451.PubMedGoogle Scholar
  21. Rossi, C.S. and Lehninger, A.L. (1964). Stoichiometry of respir- atory stimulation, accumulation of Ca++ and phosphate, and oxidative phosphorylation in rat liver mitochondria. J. BioZ. Chem. 239: 3971–3980.Google Scholar
  22. Rottenberg, H. (1970). ATP synthesis and electrical membrane potential in mitochondria. Sur. J. Biochem. 15: 22–28.Google Scholar
  23. Slater, E.C. (1976). Intra-and extramitochondrial phosphorylation potentials. In: J.M. Tager, H.D. Soling, and J.R. Williamson (Eds.), Use of Isolated Liver Cells and Kidney Tubules in Metabolic Studies. pp. 65–77. North-Holland, Amsterdam.Google Scholar
  24. Slater, E.C. (1975). Components of electron-transfer chains. In: E. Quagliariello et al. (Eds.) Electron Transfer Chains and Oxidative Phosphorylation. pp. 3–14. North-Holland, Amsterdam.Google Scholar
  25. Slater, E.C. (1974). Electron transfer and energy conservation. In: L. Ernster, R.W. Estabrook, and E.C. Slater (Eds.) Dynamics of Energy-Transducing Membranes. pp. 1–20. Elsevier, Amsterdam.Google Scholar
  26. Tager, J.M., Akerboom, T.P.M., Hoek, J.B., Meijer, A.J., Vaartjes, W., Ernster, L., and Williamson, J.R. (1975). Ammonia and energy metabolism in isolated mitochondria and intact liver cells. In: F.A. Hommes and C.J. Van den Berg (Eds.) Development of Energy Metabolism. pp. 63–72. Academic Press, New York.Google Scholar
  27. Wiechmann, A.H.C.H., Beem, E.P., and van Dam, K. (1975). The relationship between H+ translocation and ATP synthesis in mitochondria. In: E. Quagliariello et al. (Eds.) Electron Transfer Chains and Oxidative Phosphorylation. pp. 335–342. North-Holland, Amsterdam.Google Scholar
  28. Williams, R.J.P. (1975). Protein connections between protons, electrons, and ATP. In: E. Quagliariello et al. (Eds.) Electron Transfer Chains and Oxidative Phosphorylation. pp. 417–422. North-Holland, Amsterdam.Google Scholar
  29. Williams, R.J.P. (1970). Electron transfer, conformation changes and energy conservation. In: J.M. Tager, S. Papa, E. Quagliariello, and E.C. Slater (Eds.) Electron Transport and Energy Conservation. pp. 7–23. Adriatica, Bari.Google Scholar
  30. Williams, R.J.P. (1961). Possible functions of chains of catalysts. J. Theor. BioZ. 1: 1–17.CrossRefGoogle Scholar
  31. Wilson, D.F., Stubbs, M., Veech, R.L., Erecinska, M., and Krebs, H.A. (1974). Equilibrium relations between the oxidation-reduction reactions and the adenosine triphosphate synthesis in suspensions of isolated liver cells. Biochem. J. 140: 5764.Google Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • Albert L. Lehninger
    • 1
  1. 1.Department of Physiological ChemistryThe Johns Hopkins School of MedicineBaltimoreUSA

Personalised recommendations