Skip to main content

Do Hyperplastoid Cell Lines “Differentiate Themselves to Death”?

  • Chapter
Cell Impairment in Aging and Development

Abstract

Hayflick and Moorhead (1) clearly differentiated between two classes of mammalian cell lines: 1) Those typified by HeLa are apparently immortal and may serve as models for the study of neoplastic cell proliferation; we refer to them as “neoplastoid” 2) Those typified by WI-38 and by human skin fibroblast cultures eventually cease replicating and may be useful as models for the study of hyperplastic cellular proliferation or wound healing; consequently, we refer to them as “hyperplastoid.” Martin and Sprague (2) have recently tabulated some 21 parameters which have been claimed to differentiate between these two classes of cell lines. In mass cultures, the replicative life-span is currently among the most unambiguous differential parameters. Individual clones of either type of culture may cease proliferating, however, and it is this phenomenon which we refer to as “clonal senescence.” In the case of human diploid somatic cells, it is probable that some thousands of such clones have been followed in many different laboratories and to the best of our knowledge, all of them eventually stop growing, unless they are induced to undergo malignant transformation. Curiously, much less is known about the replicative life histories of individual clones and sub-clones of neoplastoid cells, even though they are comparatively easy to clone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hayflick, L. and Moorhead, P.S. 1961. The serial cultivation of human diploid cell strains. Exp. Cell Res. 25: 585.

    Google Scholar 

  2. Martin G.M. and Sprague, C.A. 1973. Symposium on in vitro studies related to atherogenesis. Life histories of hyper-plastoid cell lines from aorta and skin. Exp. Molec. Path. 18: 125.

    Google Scholar 

  3. Orgel, L.E, 1963. The maintenance of the accuracy of protein synthesis and its relevance to aging. Proc. Nat. Acad. Sei. USA 49: 517.

    Article  CAS  Google Scholar 

  4. Martin, G.M., Sprague, C.A., Norwood, T.H. and Pendergrass, W.R. 1974. Clonal selection, attenuation and differentiation in an In vitro model of hyperplasia. Am. J. Path. 74: 137.

    Google Scholar 

  5. Holtzer, H. and Abbotto, J. 1968. Oscillations of the chondrogenic phenotype in vitro. In: The Stability of the Differentiated State. H. Ursprung, ed., Springer-Verlag, Berlin, Heidelberg, p. 1.

    Google Scholar 

  6. Ephrussi, B. 1972. Hybridization of Somatic Cells. Princeton University Press, New Jersey.

    Google Scholar 

  7. Delcour, J. and Papaconstantinou, J. 1974. A change in the stoichiometry of assembly of bovine lens a-crystallin subunits in relation to cellular differentiation. Biochem. Biophys. Px.es. Commun. 57: 134.

    Google Scholar 

  8. Martin, G.M. 1973a. Human skin fibroblasts. In: Tissue Culture-Methods and Applications. P.F. Kruse and M.K. Patterson, eds., Academic Press, Inc., New York, p. 39.

    Google Scholar 

  9. Martin, G.M. 1973b. Dilution plating on coverslip fragments. In: Tissue Culture-Methods and Applications. P.F. Kruse and M.K. Patterson, eds.. Academic Press, Inc., New York, p. 264.

    Google Scholar 

  10. Martin, G.M., Sprague, C.A. and Epstein, C.J. 1970. Replicative life-span of cultivated human cells. Effects of donors age, tissue and genotype. Lab. Invest. 23: 86.

    Google Scholar 

  11. Ginsburg, H. and Lagunoff, D. 1967. The in vitro differentiation of mast cells. Cultures of cells from immunized mouse lymph nodes and thoracic duct lymph on fibroblast monolayers. J. Cell Biol. 35: 685.

    Google Scholar 

  12. Holliday, R. and Tarrant, G.M. 1972. Altered enzymes in ageing human fibroblasts. Nature 238: 26.

    Article  PubMed  CAS  Google Scholar 

  13. Pendergrass, W.R., Martin, G.M. and Bernstein, P. 1974b. Evidence contrary to the protein error hypothesis for in vitro senescence, in preparation.

    Google Scholar 

  14. Norwood, T.H., Pendergrass, W.R., Sprague, C.A. and Martin, G.M. 1974a. Dominance of the senescent phenotype in heterokaryons between replicative and post-replicative human fibroblast-like cells. Proc. Nat. Acad. Sci. USA, in press.

    Google Scholar 

  15. Shevach, E.M., Jaffe, E.S. and Green, I. 1973. Receptors for complement and immunoglobulins on human and animal lymphoid cells. Transplant. Rev. 16: 3.

    PubMed  CAS  Google Scholar 

  16. Boyum, A. 1968. Separation of leucocytes from blood and bone marrow. Scand. J. Clin. Lab. Invest. 21: Suppl. 97.

    Google Scholar 

  17. Arend, W.P. and Mannik, M. 1972. In vitro adherence of soluble immune complexes in macrophages. J. Exp. Med. 136: 514.

    Article  PubMed  CAS  Google Scholar 

  18. Lewis, C.M. and Tarrant, G.M. 1972. Error theory and ageing in human diploid fibroblasts. Nature 239: 316.

    Article  PubMed  CAS  Google Scholar 

  19. Holliday, R., Porterfield, J.S. and Gibbs, D.D. 1974. Premature ageing and occurrence of altered enzyme in Wernerfs syndrome fibroblasts. Nature 248: 762.

    Article  PubMed  CAS  Google Scholar 

  20. Pendergrass, W.R., Martin, G.M. and Bornstein, P. 1974a. Evidence contrary to the protein error hypothesis for in vitro senescence. Gerontologist, in press (abstract).

    Google Scholar 

  21. Takeuchi, T. and Prockop, D.J. 1969. Biosynthesis of abnormal collagens with amino acid analogues I. Incorporation of L- azetidine-2-carboxylic acid and cis-4-fluoro-L-proline into protocollagen and collagen. Biochim. Biophys. Acta 175: 142.

    Google Scholar 

  22. Lane, J.M., Dehon, P. and Prockop, D.J. 1971a. Effect of the proline analogue azetidine-2-carboxylic acid on collagen synthesis in vivo I. Arrest of collagen accumulation in growing chick embryos. Biochim. Biophys. Acta 236: 517.

    Google Scholar 

  23. Lane, J.M., Parkes, L.J. and Prockop, D.J. 1971b. Effect of the proline analogue azetidine-2-carboxylic acid on collagen synthesis in vivo II. Morphological and physical properties of collagen containing the analogue. Biochim. Biophys. Acta. 236: 528.

    Article  PubMed  CAS  Google Scholar 

  24. Holland, J.J., Kohne, D, and Doyle, M.V. 1973. Analysis of virus replication in ageing human fibroblasts cultures. Nature 245: 316.

    Article  PubMed  CAS  Google Scholar 

  25. Tomkins, G.C., Stanbridge, E.J. and Hayflick, L. 1974. Viral probes of aging in the human diploid cell strain WI-38. Proc. Soc. Exp. Biol. Med. in press.

    Google Scholar 

  26. Srivastava, S.K., Blume, K.G., Beutler, E. and Yoshida, A. 1972. Immunological differences between glucose-6-P dehydrogenase and hexose-6-P dehydrogenase from human liver. Nature New Biol. 238: 240.

    PubMed  CAS  Google Scholar 

  27. Shaw, C.R. and Barto, E. 1965. Autosomally determined polymorphism of glucose-6-phosphate dehydrogenase in peromyscus. Science 148: 1099.

    Article  PubMed  CAS  Google Scholar 

  28. Ohno, S., Payne, H.W., Morrison, M. and Beutler, E. 1966. Hexose-6-phosphate dehydrogenase found in human liver. Science 153: 1015.

    Article  PubMed  CAS  Google Scholar 

  29. Ruddle, F.H., Shows, T.B. and Roderick, T.H. 1968. Autosomal control of an electrophoretic variant of glucose-6-phosphate dehydrogenase in the mouse (mus muscuius). Genetics 58: 599.

    PubMed  CAS  Google Scholar 

  30. Bonsignore, A. and Deflora, A. 1972. Regulatory properties of glucose-6-phosphate dehydrogenase. In: Current Topics in Cellular Regulation. B.L. Horecker and L. Stadtman, eds., v. 6, p. 21.

    Google Scholar 

  31. Marks, P.A. 1964. Glucose-6-phosphate dehydrogenase: Its properties and role in mature erythrocytes. In: The Red Blood Cell. C. Bishop and D.M. Surgenor, eds., Academic Press, Inc., New York, p. 211.

    Google Scholar 

  32. Fornaine, G. 1967. Biochemical modifications during the life span of the erythrocyte. Ital. J. Biochem. 16: 257.

    Google Scholar 

  33. Park, C. 1971. A study on the properties of glucose-6-phosphate dehydrogenase from young and old human erythrocytes. Yon. J. Med. Sci. 4: 118.

    Google Scholar 

  34. Yip, L.C., Dancis, J., Mathieson, B. and Balis, M.E. 1974. Age-induced changes in adenosine monophosphate: pyrophosphate phosphoribosyl-transferase and iosine monophosphate: pyrophosphate phosphoribosyl-transferase from normal and Lesch- Nyhan erythrocytes. Biochemistry 13: 2558.

    Article  PubMed  CAS  Google Scholar 

  35. Franks, L.M. and Cooper, T.W. 1972. The origin of human embryo lung cells in culture: a comment on cell differentiation, in vitro growth and neoplasm. Int. J. Cancer 9: 19.

    Article  PubMed  CAS  Google Scholar 

  36. Trelstad, R.L. 1973. The developmental biology of vertebrate collagens. J. Histochem. Cytochem. 21: 521.

    Article  PubMed  CAS  Google Scholar 

  37. Hoehn, H., Bryant, E.M., Karp, L.E. and Martin, G.M. 1974. Cultivated cells from diagnostic amniocentesis in second trimester pregnancies. I. Clonal morphology and growth potential. Ped. Res., in press.

    Google Scholar 

  38. Holtzer, H., Weintraub, H., Mayne, R. and Mochan, B. 1972. The cell cycle, cell lineages, and cell differentiation. In: Current Topics in Developmental Biology. A. A. Moscona and A. Monroy, eds., v. 7, Academic Press, Inc., New York, p. 229.

    Google Scholar 

  39. Dulak, N.C. and Temin, H.M. 1973. Multiplication stimulating activity for chicken embryo fibroblasts from rat liver cell conditioned medium: a family of small polypeptides. J. Cell Physiol. 81: 161.

    Article  PubMed  CAS  Google Scholar 

  40. Houck, J.C. and Cheng, R.F. 1973. Isolation, purification, and chemical characterization of the serum mitogen for diploid human fibroblasts. J. Cell Physiol. 81: 257.

    Article  PubMed  CAS  Google Scholar 

  41. Ross, R., Glomset, J., Kariya, B. and Barker, L. 1974. A platelet dependent serum factor that stimulates the proliferation of arterial smooth muscle cells in vitro. Proc. Nat. Acad. Sci. USA 21: 1207.

    Article  Google Scholar 

  42. Pious, D.A., Hamburger, R.N. and Millis, S.E. 1964. Clonal growth of primary human cell cultures. Exp. Cell Res. 33: 495.

    Google Scholar 

  43. Macieira-Coelho, A., Ponten, J. and Philipson, L. 1966. Inhibition of the division cycle in confluent cultures of human fibroblasts in vitro. Exp. Cell Res. 43: 20.

    Article  PubMed  CAS  Google Scholar 

  44. Merz, G.S. and Ross, J.D. 1969. Viability of human diploid cells as a function of in vitro age. J. Cell Physiol. 74: 219.

    Article  PubMed  Google Scholar 

  45. Cristofalo, V.J. and Sharf, B.B. 1973. Cellular senescence and DNA synthesis. Thymidine incorporation as a measure of population age in human diploid cells. Exp. Cell Res. 76: 419.

    Article  PubMed  CAS  Google Scholar 

  46. Smith, J.R. and Hayflick, L. 1974. Variation in the lifespan of clones derived from human diploid cell strains, unpublished.

    Google Scholar 

  47. Merz, G.S, and Ross, J.D. 1973. Clone size variation in the human diploid cell strain, WI-38. J. Cell. Physiol. 82: 75.

    Article  PubMed  Google Scholar 

  48. Till, J.E., McCulloch, E.A. and Siminovitch, L. 1964. A stochastic model of stem cell proliferation, based on the growth of spleen colony-forming cells. Proc. Nat. Acad. Sci. USA 51: 29.

    Google Scholar 

  49. Hauschka, S.D. 1974a. Clonal analysis of vertebrate myogenesis II. Environmental influences upon human muscle differentiation. Dev. Biol. 17: 329.

    Google Scholar 

  50. Hauschka, S.D. 1974b. Clonal analysis of vertebrate myogenesis III. Developmental changes in the muscle-colony-forming cells of the human fetal limb. Dev. Biol. 37: 345.

    Google Scholar 

  51. Willis, R.A. 1967. The Pathology of Tumours. Butterworths, London.

    Google Scholar 

  52. Martin, G.M., Sprague, C. and Bryant, J.S. 1967. Mitotic nondisjunction in cultivated human cells. Nature 214: 612.

    Article  PubMed  CAS  Google Scholar 

  53. Allison, A.C., Davies, P. and dePetris, S. 1971. Role of contractile microfilaments in macrophage movement and endo-cytosis. Nature 232: 153.

    CAS  Google Scholar 

  54. Tumilowicz, J.J. and Sarker, N.H. 1972, Accumulating filaments and other ultrastruetural aspects of declining cell cultures derived from human breast tumors. Exp. Molec. Path. 16: 210.

    Article  PubMed  CAS  Google Scholar 

  55. Puck, T.T., Waldren, C.A. and Hsie, A.W. 1972. Membrane dynamics in the action of dibutyryl adenosine 3:5-cyclic monophosphate and testosterone on mammalian cells. Proc. Nat. Acad. Sci. USA 69: 1943.

    Article  PubMed  CAS  Google Scholar 

  56. Johnson, G.S. and Pasten, I. 1972. Role of adenosine monophosphate in regulation of morphology and growth of transformed and normal fibroblasts. J. Nat. Cancer Inst. 48: 1377.

    PubMed  CAS  Google Scholar 

  57. Robbins, E., Levine, E.M. and Eagle, H. 1970. Morphologic changes accompanying senescence of cultured human diploid cells. J. Exp. Med. 131: 1211.

    Article  PubMed  CAS  Google Scholar 

  58. Brandes, D., Murphy, D.G., Anton, E.B. and Barnard, S. 1972. Ultrastruetural and cytochemical changes in cultured human lung cells. J. Ultrastruct. Res. 39: 465.

    Article  PubMed  CAS  Google Scholar 

  59. Lipetz, J. and Cristofalo, V.J. 1972. Ultrastructural changes accompanying the aging of human diploid cells in culture. J. Ultrastruct. Res. 39: 43.

    Article  PubMed  CAS  Google Scholar 

  60. Harris, H., Watkins, J.F., Ford, C.E. and Schoefl, G.I. 1966. Artificial heterokaryons of animal cells from different species. J. Cell Sci. 1.

    Google Scholar 

  61. Harris, II. 1967. The reactivation of the red cell nucleus. J. Cell Sci. 2: 23.

    PubMed  CAS  Google Scholar 

  62. Baserga, R. and Nemeroff, K. 1962. Two-emulsion radioautography. J. Histochem. Cytochem. 10: 628.

    Article  CAS  Google Scholar 

  63. Norwood, T.H., Pendergrass, W.R., Sprague, C.A. and Martin, G.M. 1974b. A heterokaryon study on in vitro senescence. In Vitro 9: 351.

    Google Scholar 

  64. Harris, H„, Sidebottom, E., Grace, D.M. and Bramwell, M.E. 1969. The expression of genetic information: a study with hybrid animal cells. J. Cell Sci. 4: 499.

    PubMed  CAS  Google Scholar 

  65. Norwood, T.H., Pendergrass, W.R., Sprague, C.A. and Martin, G.M. 1974c. Reinitiation of DNA synthesis in senescent human fibroblasts upon fusion with immortal cells. Submitted for publication.

    Google Scholar 

  66. Goldberg, A.L. 1972. Degradation of abnormal proteins in Escherichia coli. Proc. Nat. Acad. Sci. USA 69: 422.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer Science+Business Media New York

About this chapter

Cite this chapter

Martin, G.M. et al. (1975). Do Hyperplastoid Cell Lines “Differentiate Themselves to Death”?. In: Cristofalo, V.J., Holečková, E. (eds) Cell Impairment in Aging and Development. Advances in Experimental Medicine and Biology, vol 53. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0731-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0731-1_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0733-5

  • Online ISBN: 978-1-4757-0731-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics