Activation of Cellulose-Triacetate Carbon by Reaction with Carbon Dioxide: A Microgravimetric Study

  • N. G. Dovaston
  • B. McEnaney
Conference paper


An apparatus incorporating a Cahn RG electrobalance is described which follows the reaction of a cellulose-triacetate carbon with carbon dioxide at 76 torr and temperatures up to 1300 K, and measures the porosity so developed in the carbon by adsorption of carbon dioxide at 195 K. Reaction rates obtained for the activation process yield kinetic parameters which indicate that below about 1208 K the reaction rate is chemically controlled, the influence of mass transport of gases being negligible. A measure of the microporosity developed on activation is obtained by plotting the 195 K adsorption isotherms according to the Dubinin Equation. The influence of heat treatment of the carbon on the activation kinetics and porosity development is considered.


Reaction Vessel Needle Valve Cellulose Triacetate Industrial Carbon Solid Carbon Dioxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. L. Walker, Jr., T. G. Lamond, and J. E. Metcalfe III, Proceedings of the 2nd Conference on Industrial Carbon and Graphite, Society of Chemical Industry, London (1966), p. 7.Google Scholar
  2. 2.
    S. M. Rowan, M. Sc. Thesis, Durham University, England (1966).Google Scholar
  3. 3.
    J. J. Kipling, J: N. Sherwood, P. V. Shooter, and N. R. Thompson, Carbon, 1, 321 (1964).Google Scholar
  4. 4.
    J. J. Kipling and B. McEnaney, Fuel, 43, 367 (1964).Google Scholar
  5. 5.
    J. J. Kipling and P. V. Shooter, Proceedings of the 2nd Conference on Industrial Carbon and Graphite, Society of Chemical Industry, London (1966), p. 15.Google Scholar
  6. 6.
    J. D. Brooks and G. H. Taylor, Carbon, 3, 185 (1965).CrossRefGoogle Scholar
  7. 7.
    A. Bailey and D. H. Everett, Nature, 211, 1082 (1966).CrossRefGoogle Scholar
  8. 8.
    N. G. Dovaston, B. McEnaney, and S. M. Rowan, Proceedings of 3rd Conference on Industrial Carbon and Graphite, Society of Chemical Industry, London (1970), in press.Google Scholar
  9. 9.
    C. A. Redfarn and J. Bedford, Experimental Plastics, Inter-science, London (1960), p. 15.Google Scholar
  10. 10.
    B. McEnaney and S. M. Rowan, Chem. & Ind., 1965, 2032.Google Scholar
  11. 11.
    J. M. Thomas and J. A. Poulis, Vacuum Microbalance Techniques, Vol. 3 (K. M. Behrndt, ed.), Plenum Press, New York (1963), p. 15.Google Scholar
  12. 12.
    M. J. Bennet and F. C. Tompkins, Trans. Faraday Soc., 53, 185 (1957).CrossRefGoogle Scholar
  13. 13.
    K. Hedden and E. Wicke, Proceedings of the 3rd Conference on Carbon, Pergamon Press, New York (1959), p. 249.Google Scholar
  14. 14.
    E. Bregazzi, E. Greenhalgh, J. W. Sutherland, and D. J. Tucker, Carbon, 3, 73 (1965).CrossRefGoogle Scholar
  15. 15.
    M. M. Dubinin, Chemistry and Physics of Carbon, Vol. 2 (P. L. Walker, Jr., ed.), E. Arnold, London (1966), p. 51.Google Scholar
  16. 16.
    M. M. Dubinin, B. P. Bering, V. V. Serpinski, and B. N. Vasil’ev, Surface Phenomena in Chemistry and Biology (J. F. Danielli, ed.), Pergamon Press, London (1958), p. 172.Google Scholar
  17. 17.
    O. C. Bridgemann, J. Am. Chem. Soc., 49, 1174 (1927).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1970

Authors and Affiliations

  • N. G. Dovaston
    • 1
  • B. McEnaney
    • 2
  1. 1.Sunderland PolytechnicSunderlandEngland
  2. 2.Bath University of TechnologyBathEngland

Personalised recommendations