UHV Microbalance and Quartz Oscillator at Low Temperatures

  • D. Hillecke
  • H. Mayer
Conference paper


The intensities of beams of rubidium atoms were determined simultaneously by two independent methods with a magnetically compensated microbalance and with a resonating quartz oscillator, the latter serving as the pan of the microbalance. Both systems were operating at 180 K inside a cooled glass Dewar. Taking into account the temperature changes of the weighing ensemble during deposition caused mainly by the condensation of Rb atoms and the warming up of the surrounding Dewar, the Rb atom beam intensities, determined by the microbalance and independently by the frequency shift of the resonating quartz, agree to within 2%. In a separate experimental setup the measurements of the Rb atom beam intensities with a calibrated Pt-ionization foil and with the quartz oscillator at 81 K agree also to within 2%.


Frequency Shift Condensation Rate Rubidium Atom Mass Thickness Quartz Oscillator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Sauerbrey, Z. Phys., 155, 206 (1959).CrossRefGoogle Scholar
  2. 2.
    M. P. Lostis, J. Phys. Radium, 20, 258 (1959).CrossRefGoogle Scholar
  3. 3.
    J. C. Bruyère, J. Phys. Radium, 21, 222A (1960).Google Scholar
  4. 4.
    A. R. Wolter, J. Appl. Phys., 36, 2377 (1965).CrossRefGoogle Scholar
  5. 5.
    T. E. Hartmann, J. Vac. Sci. Technol., 2, 239 (1965).Google Scholar
  6. 6.
    J. Edgecombe, J. Vac. Sci. Technol., 3, 28 (1966).Google Scholar
  7. 7.
    B. W. Kington, Marconi Instr., 10, 81 (1966).Google Scholar
  8. 8.
    W. H. Lawson, J. Sci. Instr., 44, 919 (1967).CrossRefGoogle Scholar
  9. 9.
    H. K. Pulker, Z. Angew Phys., 20, 537 (1966).Google Scholar
  10. 10.
    H. J. Ishkin and V. S. Zazulin, Instr. Exptl. Techniques, 1, 44 (1963).Google Scholar
  11. 11.
    D. Hillecke and R. Niedermayer, Vakuum-Technik, 14, 69 (1965).Google Scholar
  12. 12.
    R. Niedermayer, N. Gladkich, and D. Hillecke, Vacuum Microbalance Techniques, Vol. 5 (K. H. Berndt, ed.) Plenum Press, New York (1966), p. 817.Google Scholar
  13. 13.
    H. L. Eschbach and E. W. Kruidhof, Vacuum Microbalance Techniques, Vol. 5 (K. H. Berndt, ed.), Plenum Press, New York (1966), p. 207.Google Scholar
  14. 14.
    G. Sauerbrey, A. E. Ü., 18, 617 (1964).Google Scholar
  15. 15.
    H. Mayer, R. Niedermayer, W. Schroen, D. Stünkel, and H. Göhre, Vacuum Microbalance Techniques, Vol. 3 (K. H. Berndt, ed.), Plenum Press, New York (1962), p. 75.Google Scholar
  16. 16.
    P. Schmider and H. Mayer, this volume, p. 207.Google Scholar
  17. 17.
    H. Göhre, Physik und Technik von Sorptions-und Desorptions vorgängen bei niederen Drucken, 2. Europäisches Symposium Vakuum, Frankfurt 1963.Google Scholar
  18. 18.
    D. Hillecke, Z. Phys., 215, 343 (1968).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1970

Authors and Affiliations

  • D. Hillecke
    • 1
  • H. Mayer
    • 1
  1. 1.Department of PhysicsTechnische Universität ClausthalW. Germany

Personalised recommendations